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Multifractal analyses of music sequences
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Abstract

Multifractal analysis is applied to study the fractal property of music. In this paper, a method is proposed to transform both the melody and
rhythm of a music piece into individual sets of distributed points along a one-dimensional line. The structure of the musical composition is
thus manifested and characterized by the local clustering pattern of these sequences of points. Specifically, the local Hölder exponent and the
multifractal spectrum are calculated for the transformed music sequences according to the multifractal formalism. The observed fluctuations of
the Hölder exponent along the music sequences confirm the non-uniformity feature in the structures of melodic and rhythmic motions of music.
Our present result suggests that the shape and opening width of the multifractal spectrum plot can be used to distinguish different styles of music.
In addition, a characteristic curve is constructed by mapping the point sequences converted from the melody and rhythm of a musical work into
a two-dimensional graph. Each different pieces of music has its own unique characteristic curve. This characteristic curve, which also exhibits a
fractal trait, unveils the intrinsic structure of music.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nature is full of irregular patterns and complicated phenom-
ena. Despite their complicated appearances, ‘self similarity’,
that is, the similarity between the whole and a small portion
of a system, can be observed in many configurations and phe-
nomena upon closer investigation. Geometry with such scale-
invariant features has now been categorized and designated as
‘fractal’ in literature [1]. Many geometries existing in nature are
fractal, e.g., a mountain’s profile and the shape of snowflakes.
Music, whose origin may be attributed to imitating the har-
mony of nature’s sound, also demonstrates a fractal property
like many other naturally occurring fluctuations do.

Music can be used to express human feelings and emotions
toward nature. A few musical notes can be aligned by a
composer’s will into a beautiful and pleasant song; whereas
the same notes can be arranged into an annoying or discordant
noise if randomly aligned. So what is the mystique of music?
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This is an issue that has been investigated for hundreds of years,
but has not been concluded so far. Fractal theory [1], developed
in the 1970s, provides an innovative tool for the analysis of a
sequence of symbols. By applying fractal tools in the study of
music, researchers, including Voss and Hsu, were surprised to
discover that the self-similarity property, which is ubiquitous
in nature, also exists in music. Such an observation may be
regarded as the first step toward a further understanding of what
music is and explaining how music simulates the harmony of
nature.

1.1. Frequency ratio between music tones

When comparing two tones, a frequency ratio of small
number integers (e.g. 1:2 (an octave), 2:3 (a fifth), etc.,
under the circumstance of ‘just intonation’) indicates a more
harmonious sound than a ratio of larger number integers
(e.g. 5:6 (a minor third), 15:16 (a minor second), etc.). Just
intonation is a system of tuning in which all of the intervals
can be represented by ratios of whole numbers, with a strongly-
implied preference for the smallest numbers compatible with
a given musical purpose. Unfortunately this definition, while
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accurate, does not convey much to those who are not already
familiar with the art and science of tuning. The piano and
almost all modern keyboard instruments follow the twelve-
tone scale; i.e. an octave with a frequency ratio of 1:2 is
divided geometrically by even intervals into 12 semitones, each
corresponding to one of the seven white or five black keys on
the piano, and their frequency and fundamental frequency f0
satisfy the exponential function of f j/ f0 = 2 j/12. The twelve-
tone scale differs from just intonation in frequency ratio; e.g. a
perfect fourth consists of 5 semitones with a frequency ratio of
25/12

= 1.3348, which is close to 4/3; a perfect fifth consists
of 7 semitones with a frequency ratio of 27/12

= 1.4983,
which is nearly 3/2. Both are ratios of smaller integers. A
diminished fifth, however, has 6 semitones with a frequency
ratio of 26/12

= 1.4142, which is almost 1000/707. This is not
a ratio of small integers. Therefore, such an interval has been
traditionally considered dissonant and is rarely used in classical
pieces.

1.2. Music as 1/ f noise

Before discussing the relationship between music and fractal
theory, let us focus on a particular type of noise — 1/ f noise
first. Mandelbrot proposed that there is a kind of sound in
which the quality is unaffected by changes in play speed, and
called this sound ‘scaling noise’ [1]. The plainest example
of scaling noise is ‘white noise’. Suppose a time series is
produced in accordance with temporal variations of white noise,
a calculation of its power spectral density S( f ) reveals that the
relationship between S( f ) and f can be stated as S( f ) ∝ f −β ,
where scaling exponent β = 0, indicating its monotonousness
at whatever play speed. In other words, white noise is a mixture
of frequency components from a wide range that are randomly
and completely combined; its features are utmost randomness
and totally unrelated points. Brownian noise is another type of
scaling noise with scaling exponent β = 2. It depicts Brownian
movement or random walk, with the strongest correlation
among points within a characteristic time scale.

On the other hand, after conducting a spectral analysis
on various types of music, including classical music (Bach,
Mozart, Beethoven . . . ) and modern jazz, Voss and Clarke [2,
3] discovered that musical works of various melodies and
styles share a similar tendency toward a 1/ f spectrum. In fact,
music featuring a 1/ f spectrum happens to be a 1/ f noise
intermediary between the flat spectrum of white noise and
the steep 1/ f 2 spectrum of Brownian noise. It is a kind of
scaling noise, too. However, neither white noise nor Brownian
noise can be called music; the former is so random and
unassociated that it becomes uninteresting, while the latter has
over-emphasized connections and lacks charm. Only 1/ f noise
can merge the randomness and orderliness into a naturally
pleasant and attractive whole [4,5].

1.3. Fractal geometry in music

Observation of time series of 1/ f noise with various time
scales reveals statistical self-similarity. That is to say, any
enlargement or reduction of the timeline would not affect
the tendency of fluctuation. Mandelbrot called such behavior

scale invariance. Furthermore, 1/ f noise features a long-
range correlation, or retaining memory over a rather long
period of time. Coincidently, nature is saturated with the 1/ f
phenomenon, as seen in a mountain contour and the fluctuation
of a river’s water level, whose variations also have the traits
of scale invariance and long-range correlation. The spectral
analysis in the study by Voss and Clarke substantiated the
assumption that music imitates characteristics of temporal
variations demonstrated by nature and the universe, and that
music features fractal geometry.

As mentioned above, Voss and Clarke, from their analysis
on the power spectrum S( f ) of musical signals of various
styles, observed fractal distribution approximating to 1/ f in
power spectra of both loudness and frequency fluctuation
(waves of melody). However, they also pointed out that such a
phenomenon is not found in all ranges of frequency; instead,
it is only so between 100 Hz and 10 kHz. In cases of high
frequency (100 Hz–2 kHz), S( f ) is not molded as 1/ f .
Hence Voss and Clarke suggested that, within a certain range,
signal fluctuations of most musical works feature long range
correlation, and the exponents of the power spectrum may also
be associated with fractal content of music.

In the 1990s, Hsu and Hsu [6] discovered from analysis
of music scores by Bach and Mozart that, in general, the
difference in pitch j between two successive notes (i.e. the
melody) and the frequency of their appearance F have an
exponential relation, which can be stated as F ∝ j−D , where
D is dimension. Values of the exponent D in various musical
scores range between 1 and 3, but they are not integers. As
the dimension is not a whole number, the frequency of pitch
variation in music can be categorized as fractal geometry. In
order to visualize music, Hsu and Hsu [7] used the j value to
represent each musical note in a score, marked them in order of
appearance on coordinate axes (x, y), forming a curve, and then
diminished the sequence length by labeling points at intervals
of 2, 4, and 8 . . . points. The reduced curve looked much the
same as the original one, and the style remained unaffected.
Therefore, musical scores share the feature of self-similarity
with fractal geometry [8].

In addition, in a recent study Shi [9] employed the
calculation method of the Hurst exponent to examine the pitch
sequence fashioned in folk songs and piano pieces. Their
results indicated that music sequences have the property of long
range correlation and the fundamental principle of music is the
balance between repetition and contrast. Further, Bigerelle and
Iost [10] applied the ‘Variance Method’ to study the fractal
dimensions in 180 musical works of various styles. Based
on statistical results, they proposed that various music pieces
could be categorized by fractal dimension. Madison [11] used
a similar approach to study different musical scores with Hurst
exponents, which were found thereafter to play an important
role in the emotional expression of musical performance. The
study by Manaris et al. [12] of a 220-piece corpus (baroque,
classical, romantic, 12-tone, jazz, rock, DNA strings, and
random music) revealed that esthetically pleasing music might
be describable under the Zipf–Mandelbrot law. Gunduz and
Gunduz [13] studied the mathematical structures of six songs
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