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Abstract

We study the phase dynamics of a chain of autonomous, self-sustained, dispersively coupled oscillators. In the quasicontinuum limit the basic
discrete model reduces to a Korteveg–de Vries-like equation, but with a nonlinear dispersion. The system supports compactons – solitary waves
with a compact support – and kovatons – compact formations of glued together kink–antikink pairs that propagate with a unique speed, but may
assume an arbitrary width. We demonstrate that lattice solitary waves, though not exactly compact, have tails which decay at a superexponential
rate. They are robust and collide nearly elastically and together with wave sources are the building blocks of the dynamics that emerges from
typical initial conditions. In finite lattices, after a long time, the dynamics becomes chaotic. Numerical studies of the complex Ginzburg–Landau
lattice show that the non-dispersive coupling causes a damping and deceleration, or growth and acceleration, of compactons. A simple perturbation
method is applied to study these effects.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The subject matter of this paper unifies two principal
fields of nonlinear science: coupled self-sustained oscillators
and soliton theory. Coupled autonomous oscillators have
been a subject of interest since the discovery of their
synchronization by Huygens [1]. A theoretical understanding
of this phenomenon is almost one hundred years old [2]; since
then different features of coupled oscillators have attracted
considerable attention (see, e.g., [3,4]). When the coupling of
periodic self-sustained oscillators is weak it can be described
in the phase approximation [5], where only a variation of
oscillator phases enters into play. For two coupled oscillators
this leads to an Adler-type equation [6]. The corresponding
phase models are widely used for a description of oscillator
lattices [7–11] and globally coupled ensembles [5,12–15].

The phase approximation for coupled oscillators requires
the coupling strength to be small compared to the smallest,
in the absolute sense, negative Lyapunov exponent. One may
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then consider the ‘amplitude’ perturbations as slaved entities.
In the absence of coupling the resulting phase equations have
only zero Lyapunov exponents, therefore the dissipative or
conservative nature of the phase dynamics will solely depend
on the particulars of the coupling. In studies which focus
on synchronization properties of oscillators, it is natural to
assume that the coupling is dissipative which thus tends to
equalize the phases. Adequately strong coupling then leads
to a synchronous state with a uniform phase of a lattice or
a network, if the coupling is attractive, or to an anti-phase
lattice, if the coupling is repulsive. Notably, certain types of
coupling lead to a conservative dynamics. A prominent example
being that of a splay state in a globally coupled ensemble of
oscillators [16–20].

In contradistinction to previous studies, in the present work
we consider the dynamics of a one-dimensional lattice, a chain,
of oscillators with a dispersive coupling. A multicore fiber
laser [21], where individual self-oscillating lasers are arranged
in a ring, may be a realization of such a lattice. Another
physical example, an array of Josephson junctions, will be
discussed below. Since both the local phase dynamics and
the coupling are non-dissipative, such a system shares many
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properties with Hamiltonian lattices, in particular the phase
volume is conserved. This means that if stable synchronized
states are admissible, they are not attractors, and the dynamics
is expected to be similar to that of the well-known Hamiltonian
examples, like the sine-Gordon lattice, for which the basic
building blocks are traveling solitary waves like pulses or kinks,
that on integrable lattices collide elastically (see, e.g., [22,23]),
while in non-integrable cases eventually give way to chaos.

In recent years two new concepts have significantly enlarged
our understanding of nonlinear processes in Hamiltonian
lattices and fields. One concept introduces localized periodic
breathers in lattices [24]. The other introduces excitations
in genuinely nonlinear lattices and wave equations. Unlike
the usual solitons that have exponential, or algebraic, tails,
the corresponding traveling waves have compact or almost
compact support. These waves, the compactons, have been
introduced by one of us [25,26] and put forward in [27–
35]. Typically, compacton-bearing PDE equations (or spatially
discrete equations on a lattice) are non-integrable, at least
in the conventional sense, yet their remarkable robustness
seems to have very little to do with the conventional
solitonic integrability and appears to originate in the nonlinear
mechanism which induces their compactness. Many of the
underlying equations of motion do not have an energy integral
and some may, under certain conditions, generate exploding
solutions. Nevertheless, typical numerical simulations show
that an initial perturbation of a finite span decomposes into
a set of compactons. As an example we mention a recent
modeling of DNA opening with one-dimensional Hamiltonian
lattices [36]. Other examples include a compression wave in a
granular chain [37–41] and sedimentation of particles in dilute
suspensions [42].

In the present paper we study compactons in a chain
of dispersively coupled nonlinear self-sustained oscillators (a
short report was presented in [43]). In Section 2 we derive
the basic model of dispersively coupled phase equations. In
particular, we show that such a model emerges naturally in a
chain of Ginzburg–Landau oscillators. Some general features
of our model are presented in Section 3 where we derive
in the quasicontinuum approximation a genuinely nonlinear
PDE to describe the dynamics on a lattice which for small
amplitudes reduces to the K(2, 2)-model for compactons [26].
In Section 4 we present the solitary solutions of the derived
PDE and show that there are two types of compact waves:
the usual compactons (solitary waves with a compact support)
and kovatons (flat-top compactons or glued compact kinks).
The corresponding solitary traveling solutions on the lattice
are found numerically using an iterative algorithm due to
Petviashvili. We show that the exactly compact front is replaced
with a superexponential tail where the discrete effects are
essential. This effect is confined to a very thin boundary layer
which shrinks to a singular point in the quasicontinuum limit.
In Section 5 we present numerical simulations of the dynamics
on the lattice: evolution of an initial pulse, collisions of
compactons and kovatons and other types of waves. In Section 6
we consider finite lattices and demonstrate the emergence of
a spatio-temporal chaos of Hamiltonian type. In Section 7 we

step beyond the phase approximation and show that compactons
and kovatons can be also observed in the Ginzburg–Landau
lattice. Here, however, additional small dissipative terms arise
and lead to the decay, or growth, of compactons; these effects
are addressed using a perturbation method.

2. The basic model

2.1. Phase lattice and variety of couplings

An autonomous periodic self-sustained oscillator with
frequency ω can be characterized by the phase ϕ that obeys
dϕ
dt = ω. An equation for weakly coupled oscillators may
be derived in two steps (see [4,5] for details). First, one uses
a smallness of the coupling compared to the smallest, in the
absolute sense, negative Lyapunov exponent of the oscillator.
This allows us to write equations for the phase evolution on
a perturbed limit cycle. For the lattice of identical oscillators
these equations read

dϕn

dt
= ω + q̃(ϕn−1, ϕn)+ q̃(ϕn+1, ϕn). (1)

Here q̃ is a coupling function 2π -periodic in each argument. In
the second step the smallness of the coupling compared to the
frequency ω is used to average the r.h.s. of (1). Then only the
‘slow’ part of q̃ remains and is a function of phase differences:

dϕn

dt
= ω + q(ϕn−1 − ϕn)+ q(ϕn+1 − ϕn), (2)

where q(ϕ + 2π) = q(ϕ). Introducing new variables

vn = ϕn+1 − ϕn, (3)

we rewrite the phase equations as

dvn

dt
= q(−vn)+ q(vn+1)− q(−vn−1)− q(vn). (4)

Since the frequency does not appear in (4), rescaling the time
we may consider the coupling function q to be of order one.

Since in general any function q can be represented as a sum
of its odd and even parts, we write q as q(v) = qo(v) + qe(v)

to obtain

dvn

dt
= qe(vn+1)− qe(vn−1)+ qo(vn+1)

+ qo(vn−1)− 2qo(vn)

= ∇dqe(v)+ ∆dqo(v), (5)

where ∆d and ∇d are the discrete Laplacian and nabla
operators, respectively:

∆d f = fn+1 + fn−1 − 2 fn, ∇d f = fn+1 − fn−1. (6)

Typical and probably the simplest choice for the coupling is
q(ϕ) = sinϕ. This odd coupling is dissipative and leads to the
system v̇n = ∆d sin(v) that has the synchronous state vn = 0
as an attractor. We, on the other hand, shall restrict our attention
to a purely even coupling function, yielding

dvn

dt
= q(vn+1)− q(vn−1) = ∇dq(v) (7)
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