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h i g h l i g h t s

• Split quaternion formalism for 1D wave propagation in a multilayer medium is obtained based on the transfer matrix method.
• Periodic media with a defect are considered and several particular cases are analysed.
• A class of commutative split quaternions is identified, corresponding to defects that can be placed anywhere in the structure with the

same effect.
• A medium composed of commutative split quaternion elements is described.
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a b s t r a c t

The intrinsic transfer matrix method for 1D longitudinal elastic wave propagation through
multilayer media is used to obtain an equivalent split quaternion formalism. Periodic
media are analysed in this framework and the presence of a defect is considered. A
simple one layer defect and an inversion defect are analysed. A commutative type of
split quaternion is identified, which corresponds to defects of the periodic structure
that can be placed in any position, the overall acoustic properties of the medium being
conserved. Also, a nonperiodic medium composed of such commutative elements has a
behaviour independent of the order of elements. Several possible applications in sound
wave measurement and processing are outlined. The proposed split quaternion formalism
is compact and can make analytical and numerical computations easier.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multilayer structures for elastic wave propagation are an interesting type of composite materials both theoretically and
for their applications [1–3]. They have properties that extend and complement those of bulk materials. Periodic multilayer
structures called sonic (phononic) crystals present a rich acoustic band structure in terms of frequency and have applications
in sound insulation, environmental noise control or in filtering and sensing [4–6].

For applications, the bandgap positions and widths are important and they depend on the material properties, shape
and size of layers and on topological structure. There are reported 1D, 2D and 3D periodic systems for which very large
bandgaps are obtained [4,7,8]. A proper choice of materials gives the possibility of obtaining mechanically or electrically
tunable phononic composites required in practice [9–11]. Band structures can be obtained computationally by different
methods, such as: Bragg scattering and heuristic models [12], stochastic methods [6,13], plane wave expansion method
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(PWE) [14,15], finite difference time domainmethod (FDTD) [16–18], or the transfer matrix method (TM) [19–23]. In the 1D
propagation case exact theoretical results have been obtained for a periodic structure [24] and in the presence of defects [21].

Here we describe a split quaternion formalism equivalent to the transfermatrix formalism [25–28] for wave propagation
through 1D multilayered structures. A periodic structure with a defect is taken into consideration and the elements of the
transfer matrix are obtained. Several particular cases are described. The use of split quaternions allows the identification of
a class of commutative quaternions, which correspond to elements of the multilayer medium that can be placed anywhere
inside its structurewithout changing themedium’s properties. The formalismpresented allows a simple and straightforward
description of wave propagation through a multilayer medium, which is useful for both theoretical and computational
approaches.

2. Transfer matrix method in Fourier space

We discuss the 1D sound wave propagation through an inhomogeneous multilayered rod, where the total wave is
expressed as the superposition of a progressive wave and a regressive wave, both given by the Fourier transforms of the
corresponding time-dependent waves. A matrix formalism describes the waves’ space evolution as a function of the layers’
properties.

Consider a rod composed of n layers made of different materials set along the rod’s length, indexed j = 1, 2, . . . , n. The
rod has free input (in) and output (out) ends. The layers have the same transversal surface. Each layer j is characterised by:
length lj, mass density ρj, sound velocity cj, and acoustic impedance Zj = ρjcj. For acoustic frequency f the wave number
through layer j is kj = ω/cj, where ω = 2π f is the angular frequency. Label i =

√
−1. The Fourier transforms of the

progressive and regressive waves up
j (t), ur

j (t) at the output of layer j are taken:

Aj (ω) =


∞

−∞

up
j (t) eiωtdt, Bj (ω) =


∞

−∞

ur
j (t) eiωtdt. (1)

The propagation of the total wave through the rod from input to output can be modelled with a 2 × 2 intrinsic transfer
matrix T:

Aout
Bout


= T ·


Ain
Bin


. (2)

The transfer matrix T can be obtained from the solution of the 1D wave equation and the continuity conditions of
displacement and force at the boundary between two layers. Particular transfer matrices are [1,20,25–28] the propagation
matrix Pj through a layer j and the discontinuity matrix Dj,j+1 from layer j to layer j + 1 at their interfaces:

Pj =


exp(ikjlj) 0

0 exp(−ikjlj)


, Dj,j+1 =

1
2


1 + zj,j+1 1 − zj,j+1
1 − zj,j+1 1 + zj,j+1


. (3)

Here zj,j+1 = Zj/Zj+1 is the acoustic impedance of layer j relative to layer j+1. The intrinsic transfer matrix of themultilayer
medium is T = PnDn−1,n . . .D23P2D12P1. From the structure of the propagation and discontinuity matrices it follows that
the transfer matrix has a general expression:

T =


a b
b∗ a∗


, (4)

where a, b are complex quantities depending on the wave frequency and layers’ properties and a∗, b∗ are their conjugates.
Its determinant is det T = Z1/Zn = z1,n = z, i.e. the acoustic impedance of the input layer relative to the output layer.

3. Split quaternion formalism for wave propagation

A more detailed description of split quaternions [29–31] is presented in Appendix. Split quaternions can be expressed
as pairs of complex numbers (the temporal and spatial components of the quaternion) and have a corresponding matrix
representation. Unlike the complex number product, the split quaternion product is noncommutative. The split quaternion
matrix representation can be used to compute the propagation matrix of a multilayered medium. Since propagation and
discontinuity matrices correspond to timelike split quaternions, transfer matrices translate into timelike split quaternions
with timelike, lightlike or spacelike vector parts.

Consider a multilayered element (the spatial period) with transfer matrix τ that is repeated a certain number of times,
and a ‘‘defective’’ multilayered element with transfer matrix τd:

τ =


α β
β∗ α∗


, τd =


αd βd
β∗

d α∗

d


. (5)
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