
Wave Motion 61 (2016) 20–39

Contents lists available at ScienceDirect

Wave Motion

journal homepage: www.elsevier.com/locate/wavemoti

Bloch theorem with revised boundary conditions applied to
glide and screw symmetric, quasi-one-dimensional
structures
Florian Maurin
Institute of Mechanical Engineering, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

h i g h l i g h t s

• Wave propagation in structures with translational, glide and screw symmetries.
• Developed boundary conditions in Cartesian coordinates.
• The method is applicable to determine to complex wavenumber given a real frequency.
• The method is applicable to determine a real frequency given a real wavenumber.
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a b s t r a c t

Bloch theorem is useful for analyzing wave propagation in periodic systems. It has been
widely used to determine the energy bands of various translationally-periodic crystals and
with the advent of nanoscale structures like nanotubes, it has been extended to account
for additional symmetries using group theory. However, this extension is restricted to
Hamiltonian systems with analytical potentials. For complex problems, as for engineering
structures, the periodic unit cells are often discretized and the Bloch method is restricted
to translational periodicity.

The goal of this paper is to generalize the direct and transfer-matrix propagation Bloch
method to structures with glide and screw symmetries by deriving appropriate boundary
conditions. Dispersion relations for a set of reduced problems are compared to results from
the classical method, when available. It is found that (i) the dispersion curves are easier
to interpret, (ii) the computational cost and error are reduced, and (iii) revisited Bloch
method is applicable to structures as the Boerdijk–Coxeter helix that do not possess purely-
translational symmetries for which the classical method is not applicable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation in structures is of interest in a large range of applications such as non-destructive evaluation for
structural health monitoring [1] and imaging [2]. In the case of translationally-periodic structures, Bloch theorem, the
extension of Floquet-theory to three-dimensions, is used to obtain the behavior of an infinite medium from the analysis
of a single unit cell [3]. This can be used for example to compute the electronic band-gap structures in crystals [4] as well
as dispersion relations of railways [5]. However, in the presence of symmetries other than translation, Bloch theorem in its
original form cannot be used.
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These challenges are being addressed with two approaches: in modern physics, Hamiltonian systems with analytical or
simple potentials can be analyzed via group theory [6], and find applications among nanotubes, nanoribbons, DNA, proteins
or polymers structures [6–10]. In [11], Crepeau has shown that for electromagnetic waves propagating in a glide or screw-
symmetric antenna, the introduction of special operators for the boundary conditions allows a reduction of the unit cell.
This work is articulated in [12] where electromagnetic slow-waves in helical structures are investigated. The consideration
of symmetries allows significant simplifications and reduces computation cost.

For structural wave propagation, the presence of symmetries is handled by periodic-boundary conditions. For translation
symmetries, the employment of Bloch theorem is easily implemented in finite elements (FE), and significant research has
been devoted to analyzingwave propagation in engineering structures. One of the early pioneerswasMead [13]who studied
wave propagating in railways, restricting the analytical analysis to a periodic, simply-supported beam. He introduced the
transfer-matrix approach which relates the displacements and the forces on both sides of the periodic element for a given
frequency. Once coupled to the propagation constant µ (dimensionless wave number), a concept introduced by Heckl [14]
linking also both side forces and displacements, the system can be recast into an eigenvalue problem for which eµ are the
eigenvalues. The transfer-matrix approach has been then adapted towaveguides FE (WFE), introducing the ability to analyze
vibration in complex finite [15] and infinite [16,17] periodic structures. Initially available for one-dimensional problems,
this technique has been extended to two-dimensional problems for portions of the irreducible Brillouin zone (IBZ) [18],
and more recently for the entire IBZ [19,20]. However, for complex periodic unit cells with a large number of degrees of
freedom (dof), the transfer matrix may be ill-conditioned leading to spurious eigenvalues and a better alternative consists
of recasting the system into another eigenvalue problem for which cosh−1 (µ) are the eigenvalues [21]. An alternative
technique to the transfer-matrix approach assumes harmonic waves (propagating without attenuation) and reduces the
system to an eigenvalue problem for which, the frequencies are the solutions. This method, referred to as direct, can easily
be implemented in existing FE software [22], and it is conveniently used to evaluate the wave response of periodic media
with microstructure [23–28]. These methods however cannot immediately be extended to systems with symmetries other
than translation.

In this paper, appropriate boundary conditions are approximated for glide (also called glide-plane) and screw (also
called screw-axis) symmetric systems for both the direct and the transfer-matrix approaches. It follows previous work
on the dispersion of a periodic buckled beam [29], a structure which is glide-symmetric. In [30–32], glide-symmetric
Warren trusses and undulated beams are considered without mentioning symmetries, while dispersion curves fold, a
characteristic due to the fact that the selected period is not the minimum one, as it will be shown in the present paper.
In [33], vibrations of a tire are obtained thanks to theWFEmethod restricting analyses to a small portion of the circumference
using cyclic symmetry. In [34], Stephen studies the vibration of finite pre-twisted periodic structures taking advantage of
screw-symmetry and uses a rotation matrix to link consecutive unit cells.

In the literature pertaining to wave propagation in infinite periodic structures, helical waveguides with constant cross-
sections as cables have been addressed taking advantage of the symmetry. At least two alternatives exist for the choice of the
unit cell: modeling a three-dimensional slice of thewaveguide using classical FE [35], or restricting themodeling to its cross-
section using semi-analytical finite element (SAFE) [36,37], gaining in computation cost but requiring the implementation
of special FE formulations. The proposed method differs in the choice of the reference coordinate system. Indeed, the
formulation of [35–37] is derived in thehelical coordinate system,whereas theCartesian coordinate system is usedproviding
a simplified formulation and a natural choice for FE.Moreover, in the present paper, no assumption on constant cross-section
is made, such that the method is generalized to the full screw-symmetric group.

This paper completes the initial work [38] and is organized as follows. In Section 2, appropriate boundary conditions are
proposed which reduce unit-cell based on translation symmetry to simplified subcells according to additional symmetries.
In Appendix, it is demonstrated that these boundary conditions leave the eigenvalues of the dynamic equation unchanged,
in accordance with the present symmetries for both the transfer-matrix approach and the direct one. In Section 3 the
applicability of the proposed method is demonstrated in a set of quasi-one dimensional problems, with respect to wave
propagation. Conclusions follow.

2. Reduced Bloch theorem

Wave propagation in periodic structures can be investigated through the analysis of a unit cell and the application of
Bloch theorem [3,5,17]. Themotion of a linear, periodic domain resulting from uniaxial wave propagationmay be expressed
as follows:

dn = d0(µ(ω))eµn, (1)

where dn denotes the displacement vector of cell n within the periodic assembly, and d0 is the displacement vector within
the reference cell. The propagation constant,µ, is a complex number (µ = µr + iµi, i =

√
−1)where the real and imaginary

parts represent respectively the attenuation and phase constants. Given the periodicity, the propagation constantµ is equal
to the wave number κ multiplied by the spatial period L such that µ = Lκ . The set of linear ordinary differential equations
for a discretized periodic unit cell is:

Md̈ + Kd = f , (2)
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