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h i g h l i g h t s

• Exact solution for diffraction of time-harmonic lattice wave by a semi-infinite defect.
• Far-field asymptotic approximation of the exact solution.
• Graphical comparison with numerical solution for a set of frequencies in the pass band.
• Low frequency limit of the exact solution to obtain continuous integral form.
• Relevance to five point discretization of the two-dimensional Helmholtz equation.
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a b s t r a c t

The problem of diffraction of a time harmonic lattice wave in a two-dimensional square
lattice, by a semi-infinite rigid constraint, is investigated as a discrete analogue of diffrac-
tion by a Sommerfeld ‘soft’ half plane. The discrete Helmholtz equation, with input data
prescribed on a semi-infinite row of lattice sites, is solved exactly using the discrete
Wiener–Hopf method. The far-field asymptotic approximation of exact solution is pro-
vided. The scatteredwave, in far field, is comparedwith a numerical solution of the problem
for a set of frequencies in the pass band. The low frequency approximation of the exact so-
lution is derived and it coincides with the Sommerfeld’s solution in its integral form. The
results and discussion associated with the discrete Sommerfeld problem are relevant to
numerical methods based on a 5-point discretization of the two-dimensional Helmholtz
equation. In addition to the mechanics of waves in lattices, other physical applications of
the latter concern the scattering of an E-polarized electromagnetic wave by a conducting
half plane as well as its acoustic counterpart.

© 2015 Elsevier B.V. All rights reserved.

0. Introduction

It is well known that the elastic SH (horizontally polarized shear) wave diffraction by a semi-infinite rigid ribbon [1,2],
the diffraction of plane E-polarized (TE) electromagnetic waves by perfectly electrically conducting screen [3–5], and that
of acoustic waves traveling in a fluid by sound-absorbing ‘soft’ screen [6], are mathematically identical. These problems
belong to the category of two dimensional Helmholtz equationwith Dirichlet boundary condition on a half line [7,8]. A large
number of books and publications have attended to various aspects of this problem and its variants, over a long period of
time [9–12,1,2]. Indeed, it was a century ago that A. Sommerfeld [13] solved the twin problems in diffraction theory for the
two dimensional Helmholtz equation. One of these two problems deals with Dirichlet boundary condition (‘soft surface’)
and the other deals with Neumann boundary condition (‘hard surface’) [7,12,1]. For complicated geometrical shapes and
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boundary conditions, the two dimensional diffraction problem is posed on a suitably discretized domain and the traditional
Helmholtz equation is replaced by an appropriate discrete counterpart [14–18].

This paper presents an analysis of a discrete analogue of the Sommerfeld ‘soft’ plane problem using the discrete
Wiener–Hopfmethod [19–22], following Jones’ approach [4,7]. The results and ensuing discussions form an inseparable part
of the author’s recent work on discrete Sommerfeld problems [23–25]. The discrete version of Sommerfeld ‘soft’ half plane
problem is interpreted and formulated using a discreteHelmholtz equation on square lattice, based on5-point discretization,
with a semi-infinite rigid constraint. In this context, a study of discrete analogue of diffraction due to a semi-infinite ‘hard’
plane has been discussed using the same lattice model in [23]. In the language of mechanics, [23] provides an exact solution
for diffraction on square lattice by a semi-infinite crack, using the discrete Wiener–Hopf method [19–21] and the discrete
Fourier transform [26–28]. The overall approach is a fusion of tools developed by D. S. Jones [4,7] and L. I. Slepyan [29].
Indeed, themechanicalmodel of square lattice associatedwith the discrete formulation has been extensively studied earlier,
for example, see the distinguished works [30,31] and [32,33,29] in the context of mechanics of a screw dislocation and
Mode III crack, respectively. Several definitions and notational devices in [23], as well as the present paper, for the analysis
on square lattice model, prior to and post the application of Fourier transform, are based on the applications expounded
in [29]. In particular, the symbols h , r ,L , etc., have been used that occur frequently in the works of L. I. Slepyan [33,29]. The
definition, and associated notation, of the discrete Fourier transform follows the classical works [26–28], as well as [29]. An
interesting description of discrete Fourier transform is provided by Eatwell and Willis [34] ‘as nothing more than a Fourier
series in reverse.’

Although the square lattice formulation and discrete Fourier transform based Jones’ method, as detailed in [23], has
been adopted in this paper, still there are some outstanding issues which require an independent exposition, justifying
the motivation behind this paper. For instance, the problem of crack on square lattice with nearest neighbor interaction
involves only the crack opening displacement as unknown (as an obvious discrete analogue of the continuous case) while
that discussed in this paper involves the displacement of particles adjacent to the constraint. Using the known scattered
displacement at the constraint, the extension in the bonds adjacent to the constraint can be interpreted as an equivalent
unknown entity, which then can be associated with a discrete analogue of the shear strain in continuous case [2,35]
via difference approximation of a partial derivative. The significance of this innocuous observation is vital in a proper
formulation allowing rigorous continuum limit (similar to that present in [24]). Due to the nature of nearest neighbor
interactions in square lattice model, there is also an occurrence of unknown displacement of a particle ahead of the rigid
constraint ‘tip’, since it is also adjacent to the constraint. The details of exact solution for the same, in fact, in closed form, are
also provided in the paper. On the other hand, the governing equation is different for the particles at the crack face, while the
problem of rigid constraint does not involve such issue. Note that both original Sommerfeld problems, with Dirichlet and
Neumann boundary conditions on the half line, are also similar from the viewpoint of approach [7] but different in terms of
details such as nature of the singularity of the convolution kernel, type of Sobolev space involved, etc., from the viewpoint
of well-posedness [36]. The impact of the latter can be adjudged in the context of a well-posed continuum limit.

As an extension of the analysis presented in this paper, the operator-theoretic approach to diffraction on square lattice
by a finite, as well as semi-infinite, rigid constraint is treated in [25]. This can be viewed as a discrete analogue of integral
equation based framework that is well known for continuous case [37,38]. The questions, associated with the existence
and uniqueness of solution in appropriate space, in connection with edge diffraction near any tip of a finite rigid constraint
are addressed in [25]. A brief summary of the problem formulation, along with a list of associated definitions and several
expressions, as well as the exact solution presented in Section 2 of this paper appear in Section 3 of [25] for quick references
that is required for immediate application to near field analysis and operator-theoretic results therein. But the justification
and details of manipulations behind that summary, for instance, arguments leading to the peculiar form of theWiener–Hopf
equation, its complete solution, etc., are provided in the present paper only. Also the far-field analysis and associated
graphical results are not discussed in [25] but here, indicated by the titles of these papers.

As an added bonus of a detailed analysis of the discrete Sommerfeld problems on square lattice presented in this paper
and [23], it has been found that there is a recurrence of several manipulations and techniques in formulation of problems,
of the same type, on triangular [39] and hexagonal lattices [40], partly due to an advantage of certain notational choices
that are carried over from square lattice formulation to these other lattices. The exact solution of rigid constraint diffraction
problem on square lattice, that is attended in this paper, and that presented for the same problem on triangular lattice [39]
have a strikingly close relationship, not shared by the corresponding crack diffraction problems on these two lattices.

0.1. Outline

The outline of the diffraction problem, and its solution, is as follows. After the formulation of square lattice model with
a rigid constraint and the wave dispersion relation, the discrete Helmholtz equation is stated. Using a well defined discrete
Fourier transform, along the rows of unbounded intact lattice, a general solution is constructed. Using this and the discrete
Helmholtz equation on semi-infinite lattice row complementing the constrained half, the discreteWiener–Hopf equation is
derived as an inhomogeneous equation. The Fourier transform of the displacement of lattice row, located next to the con-
strained row, is present as an unknown function. A multiplicative factorization of theWiener–Hopf kernel and additive fac-
torization of the non-homogeneous term lead to the solution via an application of Liouville’s theorem. The displacement of
particle at lattice site facing the constraint tip, that also appears as an unknown in the problem, is determined subsequently.
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