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h i g h l i g h t s

• Water wave interferometry is described theoretically and investigated experimentally.
• Simulations and wave tank measurements are in agreement with theoretical predictions.
• Ocean-based measurements are not in agreement with theoretical predictions.
• Probable reasons for failure of the ocean-measurement-based analysis are discussed.
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a b s t r a c t

It has recently been demonstrated using a variety of wave types that cross-correlating time
series of apparently random waves measured at two locations yields an estimate of the
Green’s function that describes thewave field generated at one of those locations andmea-
sured at the other. This procedure can be described as random wave interferometry. In
this paper random surface gravity wave interferometry is described theoretically, demon-
strated using numerical simulations, and investigated experimentally using bothwavetank
measurements and ocean wave measurements. Simulations and wavetank measurements
are in good agreement with theoretical predictions, but the ocean-measurement-based
cross correlations do not yield the predicted structure. Possible explanations are discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years it has become appreciated that deterministic wave propagation information can be extracted from an
apparently random wave field via a process that can be described as random wave interferometry; the cross-correlation
of measurements at two locations of a random wave field yields an approximation to the Green’s function that describes
propagation between those locations [1–13]. Random wave interferometry has been widely investigated in the context
of elastic waves in solids [14–16], including seismic [17–22] and helioseismic [23,24] applications, and sound waves in
fluids, including applications to ocean acoustics [25–35] and atmospheric acoustics [36–38]. The underlying theory is widely
applicable, as it can be applied to any type of linear wave propagation.

In this paper we study, both theoretically and experimentally, the application of these ideas to water waves, i.e., surface
gravity waves. This topic can be referred to as random water wave interferometry. Previous work on random water wave
interferometry is described in [39,40]. [39] focuses on theory relating to tsunamis (very low frequency ocean surface gravity
waves for which kh ≪ 1), while [40] presents theory and data analysis relating to infragravity waves (low frequency ocean
surface gravity waves for which kh = O(1) in the deep ocean). The latter work builds on the earlier work [41] which
demonstrated that seafloormeasurements of infragravity-wave-induced pressure fluctuations separated by a few10’s of km
are coherent, and the work reported in [42], which demonstrated the utility of cross-correlatingmeasurements of that type.
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The basic result on which we focus in this paper is
γ CAB(t) = D(t) ∗ [Gη(xB|xA, t)+ Gη(xA|xB,−t)]. (1)

Here γ is a constant, CAB(t) is the correlation function of records of surface elevation η(t) at locations xA and xB,D(t) is
a band-limited approximation to a delta function, and Gη(x|x0, t) is the transient surface elevation at point x due to an
impulsive point source at x0. Two derivations of Eq. (1), which holds in both open and closed systems, are given below.
It is important to appreciate that two results underlie Eq. (1) — an exact identity involving Green’s functions, and a
strong approximate statistical assumption. The Green’s function identity holds provided the underlying fluid dynamical
assumptions (adequacy of linear theory, including the assumption that the flow remains irrotational) are satisfied. The
statistical assumptions underlying Eq. (1) are strong and might reasonably be questioned, but we note that experience in
other fields has shown that relationships similar to Eq. (1) are good approximations even when the underlying statistical
assumptions are only approximately satisfied.

The remainder of this paper is organized as follows. The theory underlying Eq. (1) is presented in Section 2. Derivations
of Eq. (1) for both open and closed systems are included. In Section 3 simulations, in both open and closed systems, are
presented and shown to be consistent with Eq. (1). In Section 4 the analysis of data collected in a wavetank for the purpose
of testing Eq. (1) is described. Agreement between theory and measurements is good. In Section 5 the analysis of a set
of ocean wave measurements, again to test Eq. (1), is described. Those results are not in good agreement with theory. In
Section 6 our results are discussed and summarized.

2. Theory

In this sectionwe present two derivations of Eq. (1), which holds in both open and closed systems. Each derivationmakes
use of an identity involving Green’s functions, Eq. (12) or (22), and a strong statistical assumption, Eq. (14) or (24).

2.1. Preliminaries

We begin with comments on two topics. First, it is important to distinguish between two different Green’s functions: Gφ
is the velocity potential Green’s function evaluated at the undisturbed free surface; and Gη is the surface displacement
Green’s function. Both of these quantities have time- and frequency-domain representations. Second, convolutions and
cross-correlations play important roles in the derivations below. Consider real-valued functions f1(t) and f2(t). Convolution
of f1(t) and f2(t) is defined as f1(t) ∗ f2(t) =


∞

−∞
dτ f1(τ )f2(t − τ). The cross-correlation of f1(t) and f2(t) is defined as

f1(t) ∗ f2(−t) =


∞

−∞
dτ f1(τ )f2(t + τ). Let f̄ (ω) = F [f (t)] =


∞

−∞
f (t)eiωtdt denote the Fourier transform of f (t), and let

f (t) = F−1
[f̄ (ω)] denote the inverse transform. Because these variables are real-valued, it is assumed that f̄ (−ω) = f̄

∗
(ω),

where the superscript ∗ denotes complex conjugation. The Fourier transform of the convolution f1(t) ∗ f2(t) is f̄1(ω)f̄2(ω),
and the Fourier transform of the cross-correlation f1(t) ∗ f2(−t) is f̄1(ω)f̄2

∗
(ω). For the purpose of computing the cross-

correlation of two measured time series it is necessary to replace the unbounded integration domain with a finite domain.
This leads a modified definition of the cross-correlation, f1(t) ⋆ f2(t) =

 T
0 dτ f1(τ )f2(τ + t). The ∗ and ⋆ notation introduced

here is used below. It is often convenient to normalize f1(t) ⋆ f2(t) by dividing by T ; when this is done, division by T will be
shown explicitly.

The starting point of our analysis is the linearized water wave equations of motion (see, e.g., [43]). Let x = (x, y) denote
lateral position vector, and assume that the vertical coordinate z increases upwards, with z = 0 at the undisturbed free
surface. Let ∇

2 denote the three dimensional Laplacian operator, and let ∇⊥ and ∇
2
⊥

denote the two-dimensional – in
(x, y) – gradient and Laplacian operators, respectively. We assume that the water depth h is constant. LetΦ(x, z, t) denote
the velocity potential and Φ̄(x, z, ω) its Fourier transform. The problem is to solve ∇

2Φ(x, z, t) = f (x, z, t) subject to
∂2Φ/∂t2+g∂Φ/∂z = 0 at z = 0, and ∂Φ/∂z = 0 at z = −h. The free surface displacement η(x, t) is equal to (−1/g)∂Φ/∂t
evaluated at z = 0. f (x, z, t) is a source function; ρf is the rate at which mass per unit volume is injected. The problem as
defined so far is poorly posed. The difficulty is that most functions f (x, z, t) do not couple naturally to small amplitude
surface gravity waves, and therefore do not allow the specified free surface and bottom boundary conditions to be satisfied.
Instead, most functions f (x, z, t) lead to a localized transient non-wave-like response. To avoid this difficulty, we shall
assume that the depth dependence of the source function f (x, z, t) is chosen to couple naturally to small amplitude surface
gravity waves. (It is worth noting that the same assumption is made below in a less obvious way when we find the surface
displacement Green’s function as the solution to an initial value problem; in both cases the depth dependence of the velocity
field is constrained to be dynamically consistent with the free surface displacement.)

In the frequency domain, the problem is to solve ∇
2Φ̄(x, z, ω) = f̄ (x, z, ω) subject to the boundary conditions

ω2Φ̄ = g∂Φ̄/∂z at z = 0, and ∂Φ̄/∂z = 0 at z = −h. We shall assume that f̄ (x, z, ω) = p̄(x, ω) cosh k(z + h)/ cosh kh and
that Φ̄(x, z, ω) = φ̄(x, ω) cosh k(z + h)/ cosh kh. With these assumptions the boundary conditions are satisfied provided
the dispersion relation ω2

= gk tanh kh is satisfied, and the problem is reduced to solving (∇2
⊥

+ k2)φ̄(x, ω) = p̄(x, ω). The
solution can be written φ̄(x, ω) =


dx′Ḡφ(x|x′, ω)p̄(x′, ω) where Ḡφ(x|x′, ω) is the Green’s function for the Helmholtz

equation in two space dimensions,

(∇2
⊥

+ k2)Ḡφ(x|x′, ω) = δ(x − x′). (2)
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