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h i g h l i g h t s

• Phenomenon of nonlinear coupled electromagnetic wave propagation is considered.
• The problem is formulated with physically realistic conditions.
• An original analytic approach is used to study the problem.
• It is proved the existence of a novel (nonlinear) guided regime.
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a b s t r a c t

Propagation of a sum of two monochromatic transverse electric (TE) waves in a plane
dielectric layer filled with nonlinear medium is considered. Nonlinearity in the layer is
described by a diagonal tensor with arbitrary functions w.r.t. squared module of the
complex amplitudes of an electric field. We look for guided waves that propagate along
the boundaries of the layer and decaywhen theymove off from the boundaries. It is proved
that a novel nonlinear propagation regime arises, called ‘coupled TE wave.’ It is shown that
two TE waves – generating the coupled wave – propagate at different frequencies ω1, ω2
with different propagation constants γ1, γ2, respectively. The wave propagation problem
is reduced to a nonlinear 2-parameter transmission eigenvalue problem for Maxwell’s
equations. An original analytical method to study the problem is suggested. For a wide
class of saturable nonlinearities, it is proved the existence of isolated coupled eigenvalues
(that correspond to the coupled propagation modes) and intervals of its localisation are
found, zeros of the eigenfunctions are also determined. Theoretical results are illustrated
with numerical calculations.

© 2015 Elsevier B.V. All rights reserved.

0. Introduction

The paper is devoted to studying a nonlinear interaction between two monochromatic transverse-electric (TE) waves
propagating in different directions (along y and z axes, respectively, in Oxyz Cartesian coordinates). The waves propagate
along the boundaries of a dielectric layer filled with nonlinear medium and placed between two half-spaces with constant
permittivities. The permittivity of the layer is described by a diagonal tensorε = diag {εxx, εyy, εzz}, where εxx, εyy, and εzz
are arbitrary functions w.r.t. squared module of the complex amplitude of an electric field (i.e., we consider permittivities
that describe self-action effects and are local in time and space). We look for eigenmodes that decay when they move off
from the boundaries of the layer.

It is shown that these two TEwaves form a newpolarisation – called the ‘coupled TEwave’ or ‘TE–TEwave’ – existing only
in nonlinear media (to compare, see [1–3]). It is shown that the TE–TE wave propagates at two (different) frequencies ω1
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and ω2 and has two real propagation constants γ1 and γ2. The problem is reduced to a nonlinear 2-parameter transmission
eigenvalue problem forMaxwell’s equationswhich solutions called coupled eigenvalues (or coupled propagation constants).
Each pair of coupled eigenvalues corresponds to a guided TE–TE wave.

We apply an original analytical technique – called the integral dispersion equation method (IDEM) – to study the problem;
IDEM has no connections with a bifurcation point notion or a perturbation theory. For the case of a pure monochromatic TE
wave this method was developed in [4] and then successfully applied to the Kerr case [5] (the problem from [5] is actively
discussed from 1980s and has been solved only recently). The main feature of the applied technique is that for saturable
nonlinearities IDEM allows finding important results about coupled eigenvalues, like existence, localisation, etc., without
knowing first integrals of the governing equations. IDEM can also be applied for the case of unbounded nonlinearities
(e.g., Kerr or Kerr-like types); however, in this situation additional information becomes extremely important (e.g., first
integrals [5]).

IDEM allows one to reduce the original 2-parameter eigenvalue problem to a system of two dispersion equations (DEs)
w.r.t. the spectral parameters. It is proved that solutions to the DEs are coupled eigenvalues of the original problem and
vice-versa. In fact, the system of DEs is derived for arbitrary (nonlinear) permittivities depending on squared module of
the electric field. However, the existence of coupled eigenvalues is proved only with additional restrictions, in particular,
the permittivities are assumed to be bounded functions that simulate saturable nonlinearities. Saturable nonlinearities are
often used in nonlinear optics [6–11] in order to describe particular mechanisms of the medium permittivity in response to
a strong electromagnetic field, see also Remark 5 in Section 2. Such nonlinearities are also important as they represent an
alternative for the Kerr and Kerr-like nonlinearities, which are expressed through unbounded functions. However, saturable
nonlinearities look more realistic from the physical standpoint than, e.g., the Kerr nonlinearity. For the case of the Kerr
nonlinearity some results see in [2,3,12].

Problems of nonlinear coupled electromagnetic wave propagation [2,3,12] give interesting and important nontrivial
examples of 2-parameter nonlinear eigenvalue problems with discrete sets of coupled eigenvalues, whereas in the linear
theory coupled eigenvalues belong to continuous sets [13].

The paper is organised as follows: in Section 1 the full electromagnetic statement of the problem is given; in Section 2
the original problem is reduced to a nonlinear 2-parameter eigenvalue problem on a segment; in Section 3 the system
of DEs is found and a theorem of equivalence is proved, zeros of the eigenfunctions are determined; in Section 4 well-
known necessary results of the linear theory are presented; in Section 5 theorems of existence and localisation of coupled
eigenvalues are proved; in Section 6 numerical calculations are given and compared with the theory.

1. Governing equations and statement of the problem

Let us consider a sum of two monochromatic TE waves propagating in two orthogonal directions along the boundaries
of a homogeneous anisotropic nonmagnetic dielectric layer

Σ := {(x, y, z) : 0 6 x 6 h, −∞ < y, z < +∞}

filled with nonlinear medium. The layer is located between two half-spaces: x < 0 and x > h in Cartesian coordinate
systemOxyz. The half-spaces are filledwith isotropic nonmagneticmediawithout any sources and characterised by constant
permittivitiesε1 andε3, respectively. Without loss of generality we assumeε1 >ε3; throughout the paper we also suppose
thatε1 = ε0ε1 > ε0 andε3 = ε0ε3 > ε0 where ε0 > 0 is the permittivity of free space. Everywhere below µ = µ0 is the
permeability of free space.

The electromagnetic field is written in the form [12]

E = E1e−iω1t + E2e−iω2t , H = H1e−iω1t + H2e−iω2t ,

where

E1 = (0, E1y, 0)T, E2 = (0, 0, E2z)T,

H1 = (H1x, 0,H1z)
T  

first TE wave

, H2 = (H2x,H2y, 0)T  
second TE wave

are called the complex amplitudes [12,14] and we assume that

E1y ≡ E1y(x)eiγ1z, H1x ≡ H1x(x)eiγ1z, E1z ≡ E1z(x)eiγ1z,

E2z ≡ E2z(x)eiγ2y, H2x ≡ H2x(x)eiγ2y, H2y ≡ H2y(x)eiγ2y;

here E1y(x) and E2z(x) are real-valued functions; (γ1, γ2) is an unknown pair of real PCs.
The permittivity inside the layer is described by a diagonal tensor ε. The tensor ε is equal to ε0ε, where ε =

diag {εxx, εyy, εzz} and

εyy = ε1y + f1(|E|2), εzz = ε2z + f2(|E|2),

where f1, f2 are real-valued for real arguments; the form of εxx is not important as εxx does not affect the field. Until Section 5
we assume that f1, f2 ∈ C1

[0, +∞).



Download English Version:

https://daneshyari.com/en/article/1900080

Download Persian Version:

https://daneshyari.com/article/1900080

Daneshyari.com

https://daneshyari.com/en/article/1900080
https://daneshyari.com/article/1900080
https://daneshyari.com

