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h i g h l i g h t s

• Multiple scattering of elastic waves by dislocations is studied in perturbation theory.
• Independent scattering approximation leads to a summable series.
• A short-wavelength divergence can be renormalized.
• There are similarities with scattering by a delta function in the Schrödinger equation.
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a b s t r a c t

The coherent propagation of elastic waves in a solid filled with a random distribution of
pinned dislocation segments is studied to all orders in perturbation theory. It is shown that,
within the independent scattering approximation, the perturbation series that generates
the mass operator is a geometric series that can thus be formally summed. A divergent
quantity is shown to be renormalizable to zero at low frequencies. At higher frequencies
said quantity can be expressed in terms of a cut-offwith dimensions of length, related to the
dislocation length, and physical quantities can be computed in terms of two parameters,
to be determined by experiment. The approach used in this problem is compared and
contrastedwith the scattering of de Brogliewaves by delta-function potentials as described
by the Schrödinger equation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the interaction of an elastic wave with a dislocation has been studied within the context of continuum
elasticity [1] (hereafter I). These results have been further used to obtain results, using multiple scattering theory, for the
coherent propagation of elastic waves in the presence of many, randomly distributed, dislocations [2] (hereafter II) using
methods that go back to the seminal works of Karal and Keller [3], Frisch [4] and Weaver [5]. Leading order perturbation
theory was used to obtain formulas relating change in the speed of wave propagation to dislocation density. These formulas
have been used to show that ultrasound – more specifically resonant ultrasound spectroscopy (RUS) – can be used as a
quantitative probe of dislocation density in aluminum [6], with comparative advantages over X-ray diffraction (XRD) and
transmission electron microscopy (TEM) [7].
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The advent of a new, quantitative, nonintrusive, tool to probe dislocation density raises hope for progress in solving long-
standing challenges involving the plastic behavior of materials, such as fatigue [8], or the brittle-to-ductile [9] transition.
More specifically, there are a number of applications that stand to benefit from a nonintrusive measurement of dislocation
density. For example the plastic deformation in torsion of ice single crystals has been studiedusinghardX-ray diffraction [10]
in order to ascertain the role of geometrically necessary dislocations, and size effects have been unraveled through creep
measurements [11]. Also, high resolution extensometry experiments carried out on copper single crystals in tension have
uncovered a rich spatiotemporal structure [12]. Distinct scales of plastic processes have been found in austenitic FeMnC
steel, also using extensometry [13]. Finally, the Portevin-Le Chatelier effect [14] – in which plastic instabilities generate
localized bands – seriously hampers the use of some alloys [15] and remains, to a large extent, a mystery. Recent attempts
at developing a conceptual framework to understand the formation of patterns by dislocations include those of Sethna and
collaborators [16], Limkumnerd and van der Giessen [17], and Rickman, Haataja and Le Sar [18].

Ultrasonic waves penetrate deep into a material and appear to be the ideal tool to probe the effects described in the
previous paragraph. However, in order to probe structure, the probing wavelength must be comparable to the structure
length scale. The results reported by Mujica et al. [6] are an average over a whole sample, and rely on leading order results
in a long wavelength approximation of the theory [1,2]. Although these leading order results, obtained using perturbation
theory in a multiple scattering framework, do provide precise and useful formulas, higher order approximations will be
needed to probe shorter length scales. But, as discussed below, higher order results can diverge at high frequency because
of the zero thickness of the strings used tomodel dislocations. This paper is devoted to the elucidation of this state of affairs.

Section 2 provides the conceptual framework and approximation scheme that will be used. Section 3 shows that a Born
series for themass operator results and that it is a geometric series that can be summed. Section 4 considers the onedivergent
quantity that appears in the mass operator and shows that it can be expressed in terms of a cut-off length, a quantity to
be determined by experiment. Section 5 discusses differences and similarities with the related problem of scattering of
de Broglie waves by delta function potentials. It is concluded that, in spite of superficial similarities, the problems differ,
especially in the role played by the cut-off quantity. Section 6 has a discussion and conclusions. Technical details are spelled
out in two appendices.

2. Interaction of elastic waves with dislocation segments

We shall use the notation of I and II: A homogeneous and isotropic, linearly elastic, mediumofmass densityρ is described
by displacements u⃗(x⃗, t) away from an equilibrium position x⃗ at time t . In the absence of dislocations the dynamics is
governed by the wave equation

ρ
∂2ui

∂t2
− cijkl

∂2uk

∂xj∂xl
= 0 (1)

where the elastic constants tensor is given by cijkl = λδijδkl + µ(δikδjl + δilδjk)with (λ, µ) the Lamé constants. Longitudinal
(L) and transverse (T ) waves propagate with speeds cL ≡

√
(λ+ 2µ)/ρ and cT ≡

√
µ/ρ, respectively. We shall call their

ratio γ ≡ cL/cT > 1.
A pinned dislocation segment is described by its position X⃗(s, t) as a function of a Lagrangian parameter s and time, with

orientation provided by the unit tangent τ̂ ≡ X⃗ ′/|X⃗ ′
|, where a prime denotes derivation with respect to s. We shall consider

unbiased edge dislocations of length L and Burgers vector b⃗, that is, their position at equilibrium are straight lines. In the
absence of external loading the dislocation dynamics is given by a linear string model

mẌk(s, t)+ BẊk(s, t)− Γ X ′′

k (s, t) = 0 (2)

where overdots denote derivation with respect to time, and the associated boundary conditions of pinned ends are
Xk(±L/2, t) = 0. In Eq. (2) the coefficient

m ≡
ρb2

4π
(1 + γ−4) ln(δ/δ0), (3)

defines a mass per unit length (with δ and δ0 the long- and short-distance cut-off lengths, respectively),

Γ ≡
µb2

2π
(1 − γ−2) ln(δ/δ0) (4)

is a line tension, and B is a phenomenological viscous drag coefficient [19].
When a wave propagates in the presence of dislocations, there is an interaction. The behavior of the wave in interaction

with the dislocations is given, in the frequency domain, by the following equation [2] for the velocity vi(x⃗, ω):

−ρω2vi(x⃗, ω)− cijkl
∂2

∂xj∂xl
vk(x⃗, ω) = Vikvk(x⃗, ω) (5)
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