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HIGHLIGHTS

e A Bernoulli condition and kinematic boundary conditions are derived for a bound 2 media rotational water-wave system with free
common interface

e Non-canonical Hamiltonian equations of motion are derived

e Under a variable transformation the equations are presented in a canonical Hamiltonian form
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upper medium bound above by an impermeable lid such that the 2 media have a free
common interface. Both media have constant density and constant (non-zero) vorticity.
By examining the governing equations of the system we calculate the Hamiltonian of the
Keywords: systgm in terms pf its conjuga_te variables and perform a variable transformation to show
Hamiltonian formulation that it has canonical Hamiltonian structure. ) )
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Water waves

Poisson structure
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1. Introduction

In 1968 Zakharov published a paper [1] showing the canonical Hamiltonian structure of an infinitely deep irrotational
fluid system, i.e. with zero vorticity, with a free surface with gravitationally induced waves. Further relevant studies of the
irrotational case were carried out in [2-6]. At the beginning of the 19th century Gerstner [7] had studied vorticity and more
recently there have been several papers of interest which consider the rotational case, i.e. with non-zero constant vorticity,
e.g. [8-17]. In particular Constantin et al. [ 18] showed that a consideration of non-zero vorticity gives a nearly Hamiltonian
structure (with a linear dependency on a vorticity term). Wahlén [19] then showed that, in fact, the system does indeed
have fully Hamiltonian structure, which can be transformed into canonical form.

A consideration of a system consisting of 2 unbounded media with a free common interface was given by Benjamin and
Bridges [20,21]. Craig et al. [22,23] considered an irrotational system consisting of a lower medium bound underneath by a
flat bed and an upper medium bound above by an impermeable lid such that the 2 media have a free common interface and
also the case in which the upper media itself has a free surface. The aim of this paper is to show that, in the rotational case,
the 2 media bounded system has canonical Hamiltonian structure.
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Fig. 1. The system under study.
2. Preliminaries

As per Fig. 1 we define the lower medium £2; as the domain {(x,y) € R? : —h; <y < n(x, t)}, the upper medium £2,
as the domain {(x,y) € R? : n(x,t) < y < hy} and the entire system £2 as the domain {(x,y) € R? : —h; <y < hy}
where {y = n(x, t)} describes the elevation of the common interface. The subscript ¢ will be used to denote evaluation at
the common interface.

We use the subscript notation i = {1, 2} to represent the lower and upper media respectively and thus can consider a
velocity potential ¢; which is defined by:

{g:i sz:_wiy (1)
i = OyQi

where non-lateral velocity flow, with propagation in the positive x-direction, is given by V;(x, y, z) = (u;, v;, 0) and w; and
w, are the respective non-zero constant vorticities.
Additionally, the stream function v; is introduced, defined by:

i @

p1 and p, are the respective constant densities of the lower and upper media and stability is given by the condition that

P1 > P2.
We assume that for large |x| the amplitude of n attenuates and hence make the following assumptions

lim n(x,t) =0, (3)
|x]—o00
lim ¢;(x,y,t) =0, (4)
|x|— 00

and
—hy <nx,t) <hy forallxandt. (5)

3. Governing equations

We write Euler’s momentum-conserving equation as:
1
Vi + (Vi.V)V; = _;Vpi +g (6)
i

where P; = p;gy + pamm + Di is the pressure at a depth y, p.m is (constant) atmospheric pressure, p; is the dynamic pressure
due to the wave motion, g is the acceleration due to gravity (where y points in the opposite direction to the center of gravity)
and g is the force due to gravity per unit mass.
Applying Eqgs. (1) and (2) this can be written as
1 2 Di
V(opi + E(VW) —oiYi) =V{-gy— ; (7)
1
where V = (0, d)).
At the interface p; = p, = p. therefore we write Euler’s equation in terms of the velocity potentials, stream functions,
densities and vorticities as the energy conserving equality

1 2 1 2
P19 (g + 5 (VI = w11 +2n) = 29 (@ga)e + 5 (V)2 — a2 +80) =0, (8)

where y; is the stream function evaluated at the interface.
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