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h i g h l i g h t s

• We propose an FFT based homogenization method (FFH) to upscale complex elastic media.
• The FFH is based on trivial meshes, even for complex media.
• FFH method can handle both continuously or discontinuously varying fine scale models.
• The FFH can be used as a preprocess allowing simple meshes for wave equation solvers.
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a b s t r a c t

In the context of acoustic or elasticwave propagation, the non-periodic asymptotic homog-
enizationmethod allows one to determine a smooth effectivemedium and equations asso-
ciated with the wave propagation in a given complex elastic or acoustic medium down to a
givenminimumwavelength. By smoothing all discontinuities and fine scales of the original
medium, the homogenization technique considerably reduces meshing difficulties as well
as the numerical cost associated with the wave equation solver, while producing the same
waveformas for the originalmedium (up to the desired accuracy). Nevertheless, finding the
effective medium requires one to solve the so-called ‘‘cell problem’’, which corresponds to
an elasto-static equation with a finite set of distinct loadings. For general elastic or acous-
tic media, the cell problem is a large problem that has to be solved on the whole domain
and its resolution implies the use of a finite element solver and a mesh of the fine scale
medium. Even if solving the cell problem is simpler than solving the wave equation in the
original medium (because it is time and source independent, based on simple tetrahedral
meshes and embarrassingly parallel) it is still a challenge. In this work, we present an alter-
native method to the finite element approach for solving the cell problem. It is based on a
well-knownmethod designed by H. Moulinec and P. Suquet in 1998 in structural mechan-
ics. This iterative technique relies on Green functions of a simple reference medium and
extensively uses Fast Fourier Transforms. It is easy to implement, very efficient and relies
on a simple regular gridding of the medium. Through examples we show that the method
gives excellent results, even, under some conditions, for discontinuous media.
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1. Introduction

Solving the elastic or acoustic wave equations in complex media is a difficult and a numerically expensive task, espe-
cially for media heterogeneous at scales much smaller than the minimumwavelength of the wavefield. For a given complex
medium, the usual procedure to numerically model a wave propagation phenomena is first to mesh all the fine structures of
themedium and then to solve the wave equationwith our favorite solver. If themedium contains small scales, such a proce-
dure is difficult and time consuming because, first, the mesh may be difficult to generate and second, the obtained fine and
complex mesh induces a high numerical cost for the solver. An alternative to this simple but expensive approach is to pre-
process themedium to compute an effectivemediumusing an upscaling tool beforemeshing and solving thewave equation.
By smoothing out all the small scales from the medium, the upscaling step makes it possible to use a sparser and simpler
mesh, leading to a lower numerical cost, for the wave equation solver. In many realistic situations, the medium presents
no spatial periodicity, no natural scale separation or any kind of spatial statistical invariance. This difficulty excludes most
of the classical and numerical homogenization techniques to upscale the medium. We use here the non-periodic homog-
enization technique [1–3], which is specifically designed to upscale such general deterministic media. If the non-periodic
homogenization technique is strongly inspired from the classical two scale periodic homogenization [4], it has some strong
differences as it will appear later on. One of them lies in the fact that the obtained effective properties are not spatially
uniform, they are just ‘‘smoother’’ than the original medium.

One of the important research fields in which such general media are encountered is seismology. For many applications,
seismologists work with limited frequency-band data of the ground motion recorded by seismic stations. This limited
frequency band can be due to attenuation or instrument response but most of the time, it is simply the seismologist himself
who limits the frequency content of his data using a band-pass filter. The reason to do so is linked to limited computing
power resources available to model the data, but also to a limited knowledge of the Earth’s elastic structure. In the far-field
of the source (an earthquake, for example), the fact that data has a maximum frequency fmax ensures that the wavefield
has a minimumwavelength λmin . Solving the seismic forward problem using numerical methods (such as finite differences,
spectral elements, etc.), that is solving the wave equation to obtain the waveform at any space location, strongly relies on
this knowledge of a λmin to accurately sample the wavefield. We assume that the elastic medium in which we need to solve
the forward problem has a minimum size of characteristic heterogeneity λh . λh could be the shortest distance between
two layers of a discontinuous medium or the fastest oscillation scale of a continuous medium. To estimate the scaling, as a
function of λmin , of the computing time tc necessary to solve the forward problem for a fixed signal duration, we need to
distinguish two cases, depending on the regularity of the elastic medium under consideration:

1. if λh ≫ λmin , we are in the smooth medium case (the wavefield oscillates much faster than the medium). In such a case,
for Ns sources, the computing time tc scales as

tc ∝ Nsλ
−(d+1)
min , (1)

where d is the problem dimension (2-D or 3-D). This is the optimal case in the sense that this scaling of tc as a function
of λmin can only be improved with some extra symmetries or assumptions on the medium.

2. if λh ≪ λmin , we are in the rough medium case. In such a case, for Ns sources, the computing time tc scales as

tc ∝ Nsλ
−(d+1)
h . (2)

This second case is very common inmost realistic applications. In practice, thisλ
−(d+1)
h scaling appears differently depending

on the numerical solver used to solve the wave equation. For example, if finite elements are considered, then complex, fine
and discontinuous structures lead to a complex mesh which is usually difficult to generate and expensive to use. Indeed, in
order to be accurate, the finite element mesh needs to honor all medium discontinuities. If finite differences are used, then
small structures impose an expensive oversampling of the wavefield. The rough media case (case 2 above) is therefore a
non-optimal configuration and a seismologist feels that he is paying a computing price that he should not. This intuition is
linked to the fact that it is well-known from observations that, somehow, waves of λmin wavelength are sensitive to small
heterogeneity scales λh ≪ λmin only in an effective way and, if this effective medium was known, we could go back to
the optimal scaling cost (case 1 above), that is a cost that scales with λ−4

min and not with λ−4
h . This is exactly the objective of

non-periodic homogenization [1–3]: finding the upscaling operator allowing us to compute the effective medium of a given
rough medium so that the numerical cost scales as tc ∝ Nsλ

−(d+1)
min even if λh ≪ λmin . The non-periodic homogenization

method gets its name by opposition to the so-called two scale periodic homogenization [4] from which it is derived, a very
powerful method but limited to periodic media. A sketch summarizing the non-periodic homogenization principle in the
forward modeling context is shown in Fig. 1. The main idea of the method is to compute an effective version of the original
medium for which meshing and computation are simpler and cheaper without degrading the waveform accuracy. It can be
seen as a pre-processing step applied to the medium before importing it into the wave equation solver. It can also be seen
as a generalization of the Backus averaging (or upscaling) technique [5]. Once the homogenized medium is obtained, any
wave equation solver can be used, as long as it can handle fully anisotropic and continuously varying media.

So far, we have justified the homogenization in the forward modeling context, but we could have done it for the inverse
problem aswell. Indeed, homogenization is very useful to build an inverse problem based on amulti-scale parameterization
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