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• Properties of inhomogeneous layer modeled with exponentials.
• Exact solutions found using hypergeometric functions.
• Accurate asymptotic approximations developed.
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a b s t r a c t

An inhomogeneous solid layer is bounded on one side by a fluid half-space and on the other
by a homogeneous solid half-space. An acoustic wave in the fluid is incident on the layer.
Experiments suggest that some kind of shear-wave resonance of the layer exists. Here, the
layer is modeled with exponential variations of the material properties (Epstein model).
Solutions in terms of hypergeometric functions are found. Genuine resonances are found
but only when the layer is not bonded to the solid half-space; these are analogous to Jones
frequencies in fluid–solid interaction problems. When the solid half-space is present, the
resonances become complex: they are scattering frequencies. Simple but accurate asymp-
totic approximations are found using known estimates for hypergeometric functions with
large parameters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Shear waves in marine sediments is the title of a 600-page edited book, published in 1991 [1]. Its subject has long been
of interest to underwater acousticians. The basic model considered is a fluid (the ocean) on top of an inhomogeneous solid
layer (the sediment) on top of a homogeneous solid (the basement). Such configurations (usually without the fluid) have
also been studied in the context of seismology and soil dynamics.

Ourmotivation comes from studies by Godin and Chapman [2,3], and others, which show some kind of resonance behav-
ior, attributed to shear waves in the inhomogeneous layer; see, especially, [2, Fig. 1]. In fact, these are not genuine resonance
frequencies; they are complex scattering frequencies close to the real-frequency axis. We shall investigate these scattering
frequencies, using mainly analytical methods.

Various analytical formulas have been used to represent the variations of the material properties through the inhomo-
geneous layer. For an isotropic elastic solid, lying between planes z = 0 and z = h, the relevant quantities are the Lamé
moduli, λ(z) and µ(z), and the density, ρ(z). We shall assume exponential variations, giving models of Epstein type: in
1930, Epstein [4] considered acoustic waves in a continuously varying medium (not a layer), and he gave solutions in terms
of hypergeometric functions; we shall encounter such functions later. For elastodynamic problems with Epstein models,
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see, for example, Rao [5], Vrettos [6], Muravskii [7], Rao and Li [8] and Manolis et al. [9]; all these authors assume that ρ
and λ/µ are constants. The same assumptions are made by Godin and Chapman [2,3], but they use power-law variations
of µ(z). Robins [10] allows ρ to vary but not the Lamé moduli. For two other approaches, see [11,12]. For more details on
acoustic models, see [13, Chapter 3].

We begin by recalling the governing equations for the fluid–solid–solid problem.We consider two-dimensional motions,
with plane-strain conditions in the solid regions. There is a plane time-harmonic acoustic wave in the fluid, incident upon
the fluid–solid interface. Our focus is on normal incidence because then the whole problem decouples into two subprob-
lems, one involving the acoustic pressure and the z-component of the elastic displacement (we call this the ‘‘compressional
problem’’), and one involving the other component of the displacement (‘‘shear problem’’). If the shear problem has any
non-trivial solutions, such solutions do not couple to the fluid, and so the potential for resonance would arise. Indeed, such
real resonance frequencies do exist but only when the layer is not bonded to the homogeneous elastic half-space. (This is
a simple consequence of Sturm–Liouville theory.) When the layer is bonded to the half-space, we find complex scattering
frequencies. In both cases, the frequencies are found by setting an appropriate 2 × 2 determinant to zero. We also give a
brief discussion of a semi-infinite smoothly inhomogeneous half-space (so that there is no interface at z = h).

The numerical results are compared with simple asymptotic approximations. These are obtained by approximating the
relevant determinants, which consist of products of hypergeometric functions. Unusually, we have to estimate such func-
tions when their argument is fixed but their parameters are large; for example, F(1 + δ, 1 + δ; 1 + 2δ; ζ ) when ζ is fixed
but δ → ∞. Fortunately, an appropriate (but complicated) asymptotic approximation was given by G.N. Watson almost
100 years ago. (For a recent review of this topic, see [14].) It turns out that the asymptotic approximations give excellent
agreement with the numerical results.

2. Formulation of the problem

We consider a three-part layered medium with two flat interfaces, at z = 0 and z = h > 0.
In the semi-infinite region z < 0 (the ‘‘water’’), there is a homogeneous compressible inviscid fluid with density ρf and

sound speed cf. The pressure P satisfies the wave equation for z < 0.
In the semi-infinite region z > h (the ‘‘substrate’’), there is a homogeneous isotropic elastic solid with density ρs and

Lamé moduli µs and λs.
In the region 0 < z < h (the ‘‘layer’’), there is an inhomogeneous isotropic elastic solid with density ρ(z) and Lamé

moduli µ(z) and λ(z).
For plane-strain motions in the solid regions, the elastodynamic displacement vector has components u1(x, z, t) and

u3(x, z, t) in the x and z directions, respectively. The governing equations are
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The relevant stresses are
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At the water-layer interface, the boundary conditions are

∂P
∂z

+ ρf
∂2u3

∂t2
= 0, P + σ33 = 0 and σ13 = 0 at z = 0. (4)

At the layer-substrate interface, the boundary conditions are

u1, u3, σ13 and σ33 are continuous across z = h. (5)

2.1. Time-harmonic motions

Suppose now that

P(x, z, t) = p(z) ei(ξx−ωt), u1(x, z, t) = i u(z) ei(ξx−ωt), u3(x, z, t) = w(z) ei(ξx−ωt).

(The factor i in u1 is inserted for algebraic convenience.) In the water, we have

p′′(z) + {(ω/cf)2 − ξ 2
}p(z) = 0.

In the solid regions, Eqs. (1) and (2) become
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