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h i g h l i g h t s

• Wemodel propagation of 3D waves in randommedia in the paraxial approximation.
• We obtain a generalized O’Doherty–Anstey theory.
• We validate the results numerically.
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a b s t r a c t

We consider scattering of a pulse propagating through a three-dimensional randommedia
and study the shape of the pulse in the parabolic approximation. We show that, similarly
to the one-dimensional O’Doherty–Anstey theory, the pulse undergoes a deterministic
broadening. Its amplitude decays only algebraically and not exponentially in time, due
to the signal low/midrange frequency component. We also argue that the parabolic
approximation captures the front evolution (but not the signal away from the front)
correctly even in the fully three-dimensional situation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of imaging in heterogeneous environments arises in many important applications such as biomedical
imaging, telecommunications, seismic exploration in geophysics or non-destructive testing of materials. One standard
technique consists in probing a medium with e.g. an electromagnetic pulse and by collecting the echos on an array of
detectors. How well the method will perform strongly depends on the structure of the wavefield that propagates in the
complex medium. In particular, if the target to be imaged is buried deeply into the medium, scattering effects are important
and the measured wavefield might not be strong enough to be used in the inversion.

The main objectives of this work are to determine the spreading and decay of the pulse amplitude in the medium, and to
characterize the optimal frequency content of the source in order to probe at a given depth. In [1] the authors showed
that a pulse traveling in a layered or one-dimensional medium that fluctuates randomly on a fine scale is affected by
the microstructure in a particular way: the pulse shape undergoes a transformation that can be described in terms of a
convolution with a pulse shaping function that depends on the statistics of the microstructure, while its travel time to a
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specific depth has a small randomcomponent that depends on the particular realization of themicrostructure. This has come
to be known as the O’Doherty–Anstey approximation. A string of papers has subsequently considered this approximation
and its generalizations and applications. In [2] the mathematical theory for this theory in the layered case is presented in
detail, see also [3–6] for early references. The approximation was considered for the so called locally layeredmedia in [7]. In
recent works, see for instance [8,9], the situation with propagation in so called long range or fractional media is considered.
These works discuss the link in between the roughness and also slow decay of correlations for the layered microstructure
and the character of the associated O’Doherty–Anstey approximation. This link was used in [10] to describe the so called
fractional precursors in wave propagation. The intuitive picture is that the pulse shaping kernel acts as a low pass filter
and as the pulse travels deep into the medium the low frequencies that survive may appear as a pulse centered at lower
frequencies and which exhibit only algebraic decay if the low frequency contents are rich enough. Eventually though, if the
frequency support of the probing pulse is supported away from the origin, the pulse will exhibit exponential decay as the
wave energy is converted to incoherent fluctuations due to the scattering.

This is to be compared with the classical Brillouin precursor that arises in dispersive, dissipative media [11]: when a
broadband pulse propagates in a lossy dispersive medium, the combination of dispersive and absorption effects lead to the
generation of a low-frequency precursor field which decays algebraically and not exponentially, see [12–16]. In our context,
the medium of interest is non-dispersive and non-dissipative, and the scattering effects by the heterogeneous medium are
responsible for the existence of the precursor. There is though some dispersion in our approach since we will describe the
propagation in the paraxial approximation where the wavefield is solution to a dispersive equation. Brillouin precursors
offer applications in remote sensing and communications for instance, as well as the study of materials and biological
systems [17–20].

Here we ask the question if such a picture in fact generalizes to a two or three dimensional wave propagation scenario.
Indeed we find that core elements of these results persist. Specifically we consider acoustic waves in two or three spatial
dimensions andmodel the complexmedium by a randommediumwith appropriate statistics. The propagation of thewaves
will be described in the parabolic approximation [21]where the complex amplitude of the pressure is solution to a stochastic
Schrödinger equation. More precisely, we consider the scalar wave equation in a randommedium

1

c2(X⃗)

∂2u
∂T 2

− △u = 0, T > 0, X⃗ = (X, Z) ∈ Rd+1, (1)

with d = 1, 2 and the local wave speed c(X, Z) of the form

c−2(X, Z) = c−2
0


1 + σ0µ


X
l
,
Z
l


.

Here, c0 is a constant reference speed, Z ∈ R+ and X ∈ Rd are, respectively, the coordinates along and transverse to the
direction of propagation. The random function µ models fluctuations with amplitude σ0 and correlation length l in the
propagation speed. Solutions of the wave equation (1) may be written in the form
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where the complex amplitude ψ(Z, X; k = K) satisfies the Helmholtz equation
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Here K = ω/c0 is thewavenumber and n(X, Z) = c0/c(X, Z) is the random index of refraction relative to c0. The fluctuations
of the refraction index have the form
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The normalized and dimensionless covariance is given by

R̃(Z, X) = E{µ(X + X ′, Z + Z ′)µ(X ′, Z ′)}.

We assume that the typical propagation distance in the Z-direction is Lz , the transverse variation (say, of the initial
pulse profile) is Lx, and k0 is a central wavenumber associated with our source. We obtain the dimensionless form of (3) by
introducing the dimensionless variables X = Lxx, Z = Lzz, K = k0k and rewriting the equation as
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We assume now that the medium fluctuates on a relatively fine scale and accordingly introduce the small parameters
εx = l/Lx and εz = l/Lz . Then (4) takes the form
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