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h i g h l i g h t s

• We analyze Perfectly Matched Layers in elastic waveguides and time-harmonic regime.
• The boundary conditions at the end of the layer are designed to avoid the coupling of modes.
• PMLs do not select the outgoing solution in the presence of backward propagating modes.
• PMLs can be used however to compute a kind of reduced basis of solutions of the equations.
• The outgoing solution is recovered a posteriori as a linear combination of these solutions.
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a b s t r a c t

An efficient method to compute the scattering of a guided wave by a localized defect, in an
elasticwaveguide of infinite extent and bounded cross section, is considered. It relies on the
use of perfectly matched layers (PML) to reduce the problem to a bounded portion of the
guide, allowing for a classical finite element discretization. The difficulty here comes from
the existence of backward propagatingmodes, which are not correctly handled by the PML.
We propose a simple strategy, based on finite-dimensional linear algebra arguments and
using the knowledge of the modes, to recover a correct approximation to the solution with
a low additional cost compared to the standard PML approach. Numerical experiments are
presented in the two-dimensional case involving Rayleigh–Lamb modes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since their introduction by Bérenger [1], the perfectlymatched layers (PML) have been applied to a large number of time-
dependent and time-harmonic wave-equation problems set on unbounded domains. For such problems, it is necessary, if
any computation is to be done, to put artificial boundaries at some distance away from the given region of interest and,
in order to give accurate and reliable results, this truncation has to produce an error on the solution as small as possible.
The PML provide a way to do so by introducing layers surrounding the domain of interest in which the waves enter without
reflection and decay exponentially, hence solving the difficult task of choosing an adequate boundary condition at the end of
the computational domain. Moreover, they are relatively easy to implement in conjunction with virtually any conventional
approximation method, like the finite difference, finite element or spectral methods, and can be adapted to solve problems
originating from electromagnetism, acoustics, or elasticity, to name a few. They are also generally very efficient and often
compare favorably with other existing techniques for artificially handling unbounded domains (see for instance the Ref. [2],
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in which a comparison of the performances of high-order absorbing boundary conditions and several types of perfectly
matched layers in two dimensions, for problems governed by the Helmholtz equation, is offered).

Despite this undeniable success, the PML technique has been shown to fail in some specific situations. For linear elastic
systems inwhich the propagativemediumpresents particular anisotropy properties, numerical instabilities can be observed
in time-domain simulations [3]. In the context of waveguides, anisotropy of the material is not even a necessary feature for
this phenomenon to occur. Investigations connected this behavior to the existence of so-called backwardwaves, whose group
and phase velocities have opposite signs.1 In their presence, exponential growth occurs in the layers, rendering the method
completely unusable [8,9]. While the generated instabilities are largely discernible in transient simulations, it should be
emphasized that it is not the case in time-harmonic ones, the solution effectively computed, usually in a numerically stable
manner, simply being not an approximation to the outgoing solution of the problem. Additionally, one should mention that
the PML also perform very poorly when so-called long waves (associated with amodewhich has an almost zero propagation
constant) arise near cut-off frequencies, as the slow decay of these in the PML region calls for a very thick layer (and thus
expensive computations in practice).

In the present article, we are interested in the numerical solution of time-harmonic problems set in (semi-)infinite
waveguides. We introduce an original methodology based on a previous idea (see [10]), which can be seen as a way to
rehabilitate the use of PML in the presence of backwardwaves and/or ameans to improve its performance when longwaves
exist, at amoderate additional computational cost. Itmakes essential use of the orthogonality (or biorthogonality) properties
enjoyed by the guided modes and the a priori knowledge that some of these modes are associated with backward and/or
long waves. It therefore bears some strong similarities with the method proposed by Skelton et al. in [8] to overcome the
very same issue, which uses the biorthogonality relations satisfied by the Rayleigh–Lamb modes to separate the forward
propagating waves from the backward ones in order to treat them appropriately within the PML. It also shares a bond
with the approach proposed by Barnett and Greengard in [11] for an integral representation for quasi-periodic scattering
problems, in the sense that it involves the computation of a finite number of ‘‘corrections’’, which measure in some way the
failure of the approximate solution to satisfy a radiation condition.

Our presentation will be focused on the case of an elastic waveguide, which is particularly interesting as the potential
applications are numerous, notably for the detection of cracks within plates, rods, or pipes, in nondestructive testing, but
the underlying idea is quite general and can be applied to other wave propagation models. Note however that, due to
pending open theoretical questions on modal expansion series of guided elastic modes, we were not able to give a rigorous
mathematical justification of the method, as we achieved in [10] with the same technique applied to the use of Robin-type
boundary conditions as approximate radiation condition at finite distance for the Helmholtz equation. As a consequence,
several essential facts need to be assumed or conjectured for the method to be applicable in the present context.

Our paper is organized as follows. In Section 2, the general setting of the problem is given and the modal formalism to
be used throughout is recalled. The PML technique and its drawbacks are described in Section 3 and the novel methodology
is presented in Section 4. Details on its implementation are provided in Section 5 and a few numerical results are shown in
the following section. Finally, we address in the closing section some mathematical questions concerning this work which,
to the best of our knowledge, remain open.

2. General setting

In this paper, the elastic wave propagation problems we aim at solving numerically can be either radiation or scattering
problems, in which one wants to determine respectively the field generated by a compactly supported source placed in the
waveguide or the scattered field due to a local perturbation of the waveguide given an incident field at infinity. The present
section is devoted to their mathematical modeling and properties.

2.1. The elastic waveguide

For the sake of simplicity, we consider an isotropic elastic waveguide of semi-infinite length, an extension to the infinite
case being dealt with in Section 5. Let Ω ⊂ Rd, with d = 2 or 3, be a connected unbounded domain, obtained by locally
perturbing the perfectly straight waveguide, whose cross section S is a bounded subset of Rd−1. More precisely, we set
Ω0 = Ω ∩ {x = (xS, xd) | xd < 0} and Ω+ = Ω ∩ {x = (xS, xd) | xd > 0}, Ω0 being a bounded domain possibly containing
a localized perturbation of the cylindrical geometry of the waveguide, either a deformation of the boundary or a defect (a
crack for instance) enclosed in the guide (see Fig. 1 for an example).

Within the framework of linear elasticity theory, a time-harmonic dependence of pulsation ω > 0 being assumed, the
(vectorial) displacement is the quantity Re(u(x) e−iω t), where the field u satisfies the following equations (note that the

1 The possibility of their existence having been first discussed by Lamb [4], it is now well-known that such waves are present in linear elasticity (see [5]
for instance), as the inspection of the dispersion curves of Rayleigh–Lambmodes for some homogeneous, isotropic elastic plates shows that, for a majority
of commonly encountered materials and in some frequency ranges, the phase and the energy of a given mode can propagate in opposite directions.
These ‘‘backward-waves’’ modes also appear in dielectric-loaded circular electromagnetic waveguides, as discovered in [6], or in layered elastic structures
(see [7]).
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