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h i g h l i g h t s

• Wave propagation in initially-post-buckled structures.
• Buckling pattern simultaneously provides dispersion and nonlinearity.
• Solitons.
• Solitary waves with dispersive front.
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a b s t r a c t

Nonlinear wave propagation in solids and material structures provides a physical basis to
derive nonlinear canonical equations which govern disparate phenomena such as vortex
filaments, plasma waves, and traveling loops. Nonlinear waves in solids however remain a
challenging proposition since nonlinearity is often associated with irreversible processes,
such as plastic deformations. Finite deformations, also a source of nonlinearity, may be
reversible as for hyperelastic materials. In this work, we consider geometric bucking as
a source of reversible nonlinear behavior. Namely, we investigate wave propagation in
initially compressed and post-buckled structures with linear-elastic material behavior.
Such structures present both intrinsic dispersion, due to buckling wavelengths, and
nonlinear behavior.We find that dispersion is strongly dependent on pre-compression and
we compute waves with a dispersive front or tail. In the case of post-buckled structures
with large initial pre-compression, we find that wave propagation is well described by the
KdV equation. We employ finite-element, difference-differential, and analytical models to
support our conclusions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear dynamic deformations of solids and material structures imply amplitude-dependent motion. Kinematic
sources of nonlinearity may be accelerating local inertial frames and large deformations [1]. Kinetic sources of nonlinearity
may be inelastic material behavior [2–4] or multi-field interactions such as ferroelectric and ferromagnetic effects in solid
crystals [5,6], and phase transitions in martensitic [7] or shape-memory alloys [8,9]. All these forms of nonlinearity may
produce non-stationary processes and chaotic motion [10], but stable, nonlinear waves may exist if nonlinearity sources
can be balanced by attenuation such as dissipation or dispersion. Typical stable solutions include nonlinear periodic waves,
solitons, and bell-shaped solitary waves [1]. Solitons and bell-shaped solitary waves are solutions that have attracted
significant interest since they preserve their amplitude as they travel with amplitude-dependent velocity, and they are
unchanged by collisions with other such waves [11].

In the case of continuous solids and structures, the propagation of nonlinear waves requires nonlinear-interaction
potentials both for kinetic and kinematic sources of nonlinearity in a non-accelerating inertial frame. Inelastic behavior
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Fig. 1. Axially-loaded slender beam with large-deformation solution resulting from the elastica [26].

often results in the propagation of shock waves [12], and this is an irreversible process. For example, surface waves steep
shock fronts can generate cracks that are used to measure the fracture strength of anisotropic crystals [13,14]. Geometric
nonlinearities and irreversible material behavior are activated by large loads on certain slender continuous structures lead-
ing to the propagation of bucklewaves [15]. Reversible nonlinear-wave processes, on the other hand, have been reported in
either nonlinear solid crystals [16] or in waveguides like rods and plates made of nonlinear-elastic materials like Mooney
or Murnaghan materials [11]. In the first case, dispersion induced by interatomic spacing – a natural length scale – and
nonlinearity arising from anharmonic atomic potentials lead to solitons. In nonlinear rods and plates, solitons result from
dispersion introduced by geometric properties of the waveguides – the rod radius and the plate thickness – and nonlinear
material behavior. Solitons have also been demonstrated in thin-film-like coatings resting on a nonlinear substrate made of
lithium niobate [17]. Stable nonlinear waves are also predicted as bulkwaves in general hyperelastic, power-law solids [18]:
in this case nonlinearity is induced by material behavior and dispersion arises from coupling of deformation components.
The coupling of deformation with pre-stress is also an important phenomenon for waves of infinitesimal amplitude in hy-
perelastic [19] and incompressible materials [20].

Slender structures such as rods also allow reversible nonlinear processes such as propagating curves or loops with the
same characteristics as solitons [21–24]. Nonlinearity comes from large deformations, while strain remains small, and dis-
persion is provided by curvature resulting from the traveling loop. While these solutions have yet found no application,
different types of solitary waves are found depending on the rod formulation. In [23], the modified Korteweg–de Vries
(mKdV) equation is found which is a modified version of the prototypical equation (KdV) describing stable waves resulting
from the interaction of nonlinearity and dispersion [11]. This is a relevant problem as nonlinear waves in solids provide
a testbed to explore increasingly complex nonlinear models such the modified KdV equation which describes numerous
phenomena like water waves – for which the KdV was first derived – and vortex filaments for example [25]. In [24], the
so-called K(m, n)-KdV equation is found admitting solitary waves with compact support called compactons.

We introduce here an additional state of material structures which has the necessary characteristics to host stable,
nonlinear, elastic waves: the post-buckled state. Buckled slender structures have intrinsic length scales dependent on
the buckling pattern and this naturally introduces simultaneously dispersion and nonlinearity. Buckled slender structures
indeed have a nonlinear load–deformation relation resulting from geometric nonlinearities. For rods, buckling critical load
and load–deformation relationships are given in [26] employing Bernoulli or Timoshenko beam theory. Other modes of
geometric instability such as barreling are to be obtained for stubby structures via the Stroh formalism [27]. In this paper
we investigate wave solutions in the long-wavelength regime with analytical models, which we show to coincide with the
KdV, and solutions of time-integrated finite-element (FE)models.We consider the constitutive properties to be linear elastic.

This article is organized as follows: in Section 2, static solutions for buckled beams are summarized and FE models are
described in Section 3. In Section 4, a homogenized model for wave propagation in buckled beams is derived. Finally, re-
sults are discussed in Section 5 where FE predictions (which we consider exact for our purposes) are compared to both
discretized and homogenized analytical models. We find that both approximate models agree with FE results only for large
initial deformations. For large pre-stress, we find solutions as propagatingwaveswhich correspond to the soliton solution of
the KdV equation. When the initial compression is moderated or small, a wave packet always precedes the main waveform
and agreement between FE and approximate models is lost. This may result from certain sources of dispersion that are not
included in the KdV equation.

2. Post-buckled configurations

In this work, we limit ourselves to investigating one-dimensional (1D) post-buckled structures with linear-elastic ma-
terial behavior for simplicity. Consider the simply-supported, slender, Bernoulli beam shown in Fig. 1, with cross-sectional
area A, Young’s modulus E, area-moment of inertia I , density ρ, and initial length L. An external axial load P at the extrem-
ity produces an axial displacement U . Considering infinitesimally small, static deformations and accounting for coupling of
axial loads and transverse deformations v(x), one obtains [26]

EI
d4v(x)
dx4

+ P ·
d2v(x)
dx2

= 0, (1)

with solution

v(x) = C1 cos γ x + C2 sin γ x + C3x + C4, (2)
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