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h i g h l i g h t s

• A drastic change of P and SV waves conversion.
• The full depolarization of normally-incident shear waves.
• The conversion of SH waves into P and SV waves.
• The possibility of the whole reflected field to vanish.
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a b s t r a c t

This study deals with the reflection phenomena in an elastic half-space on which lies a
‘‘resonant surface’’. The resonant surface consists in a 2D periodic repetition of a surface
element over which linear oscillators are distributed. Following the homogenization
approach developed by Boutin and Roussillon (2006) [1], the periodic distribution of
oscillators (1 to 3D sprung-mass) is reduced to a frequency-dependent surface impedance.
It is hereby shown that the surface motion comes to zero in the resonating direction
around the oscillators’ eigenfrequency. Further, the surface impedance may be isotropic or
anisotropic, according to the type of oscillator. Thereby unusual free/rigid mixed boundary
condition arises, which in turn induces atypical reflected wave fields. The most notable
effects are (i) drastic change of P and SV waves conversion, (ii) depolarization of shear
waves, (iii) conversion of SH waves into P and SV waves, and (iv) possibility of vanishment
of the whole reflected field. The physical insight of the theoretical results is discussed and
numerical illustrations are provided.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The present study is concerned with the reflection phenomena in an elastic homogeneous half-space on which lies
a ‘‘resonant surface’’. The resonant surface consists in linear oscillators distributed on the ‘‘free’’ surface with sufficient
regularity to consider that the ‘‘oscillator layer’’ is characterized by a representative surface element (RSE) containing a few
oscillators.

The simplest realization of this situation is a 2D periodic repetition of the same representative surface element Σ

over which linear oscillators are distributed (Fig. 1). Such specific configurations are encountered in different domains of
application and at different scales, according to the nature of the oscillators and of the supporting medium: for instance
in geophysics, when considering the skyscraper-city effect on seismic motions e.g. [2–4]; in ultrasound survey, when
inverting signals in the presence of highly corrugated surface; in dynamics of nanostructures,with nanotubes or nanocrystals
equidistantly grown on the substrate [5].
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Fig. 1. Basic examples of resonating surface.

We address long wave propagation in the sense that the wave-lengths in the media are much larger than the size of the
period (or of the RSE). In other words, a scale-separation condition is satisfied. The key point of the study is to assume that
the resonance of the oscillators occurs within the scale-separation frequency range.

In this framework, the paper [1] demonstrates theoretically through multiple scale homogenization method [6,7] that
the resonant surface can be described at the leading order by an equivalent boundary condition. This latter is formulated as a
macroscopic impedance conditionwhich frequency-dependent expression is directly related to the features of the oscillator.

The aim of the present paper is to systematically investigate the unusual effects related to the resonance of the oscillators
and to evidence how much the reflected field differs from the field reflected with a free surface or with a rigid upper-layer
configuration. For simplicity, we consider a single oscillator on the period, with three degrees of freedom associated to the
horizontal or vertical directions. Isotropic (resp. anisotropic) horizontally resonant surface is obtained when the oscillator
presents the same (resp. different) features in both horizontal directions. This simple situation underlines the key aspects
of the phenomena, that can be extended with similar principles to more complex cases.

The paper is organized as follows. In Section 2, the basic assumptions and essential aspects of the modeling of a resonant
surface by an equivalent impedance are briefly recalled. In Section 3, a general formulation of thewave reflection in presence
of a surface impedance is proposed. Section 4 is devoted to the effect of isotropic horizontally resonant surfaces on the
reflection of incident SH , SV and P planewaves. Sections 5 and 6 dealwith the same questions for vertically resonant surfaces
and anisotropic horizontally resonant surfaces.

2. Equivalent impedance of a ‘‘resonant surface’’

This section sumsup the principles governing the theoretical derivation of the equivalent impedance of a resonant surface
(for more details see [1]).

2.1. Statement of the boundary layer problem

Consider a Σ-periodic distribution of linear oscillators lying on top plane surface Γ (of outward normal n) of a
homogeneous isotropic half-space of elastic tensor C (Lamé coefficients λ, µ) and density ρ. In this linear system, we study
the propagation of harmonic waves of frequency f = ω/2π , assuming a scale separation between the characteristic size ℓ
of Σ (ℓ = O(

√
|Σ |)) and the shear wavelength Λ in the medium, thus:

ε = 2πℓ/Λ ≪ 1 where Λ =
2πcS
ω

, cS =


µ

ρ
. (1)

The oscillators set in motion by the waves induce on Γ a heterogeneous distribution of stresses, σ .n = t exp[−iωt] (in the
sequel the term exp[−iωt] is systematically omitted). Because of periodicity and scale separation, (i) at the micro-scale, t is
locallyΣ-periodic, (ii) the distribution t also varies at thewavelength scale. The local 2Dperiodicity of t enforces the same2D
periodicity of the micro-scale perturbations of the physical quantities in the medium. Furthermore, as the sources of micro-
variations are located on Γ , it is inferred that away from Γ small scale variations vanish, while macro-variations remain.
Such a situation corresponds to a boundary layer located in the vicinity of the surface (see also in other contexts [6,8]).
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