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h i g h l i g h t s

• A new form of the impedance Green’s function for the Helmholtz equation is presented.
• The new hybrid formula combines images in physical space with a Sommerfeld integral.
• A fast algorithm for the numerical evaluation of the Green’s function is outlined.
• Numerical examples are performed to demonstrate the accuracy of our representation.
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a b s t r a c t

A classical problem in acoustic (and electromagnetic) scattering concerns the evaluation of
the Green’s function for theHelmholtz equation subject to impedance boundary conditions
on a half-space. The two principal approaches used for representing this Green’s function
are the Sommerfeld integral and the (closely related) method of complex images. The
former is extremely efficient when the source is at some distance from the half-space
boundary, but involves an unwieldy range of integration as the source gets closer and
closer. Complex image-based methods, on the other hand, can be quite efficient when the
source is close to the boundary, but they do not easily permit the use of the superposition
principle since the selection of complex image locations depends on both the source and
the target. We have developed a new, hybrid representation which uses a finite number
of real images (dependent only on the source location) coupled with a rapidly converging
Sommerfeld-like integral. While ourmethod applies in both two and three dimensions, we
restrict the detailed analysis and numerical experiments here to the two-dimensional case.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A number of problems in acoustics (and electromagnetics) involve the solution of the Helmholtz equation,

(∆ + k2)u(x) = f (x), (1.1)

in the half-space P = {(x, y) ∈ R2
: y > 0} or S = {(x, y, z) ∈ R3

: z > 0}, subject to suitable boundary and radiation
conditions. In acoustics, theHelmholtz coefficient k is given by k =

ω
c , whereω is the governing angular frequency (assuming

a time-harmonic motion dependency of e−iωt ) and c is the sound speed. In the present paper, we assume k ∈ C is constant
throughout the region of interest, with Re(k) ≥ 0 and Im(k) ≥ 0. For concreteness, we concentrate initially on the two-
dimensional problem of computing the scattered field due to a unit-strength point source located at x0 = (x0, y0) in the
presence of a ‘‘sound-hard’’ obstacle over an infinite half-space subject to impedance boundary conditions (Fig. 1).
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Fig. 1. Scattering from a sound-hard obstacle above an impedance plane.

We let the total field be defined as utot
= uin

+ u, where uin denotes the (known) incoming field due to the point source
and u denotes the scattered field. On a sound-hard obstacle Ω with boundary Γ , the total field must satisfy homogeneous
Neumann boundary conditions. Since the scattered field involves no sources outside Ω , it must satisfy the homogeneous
Helmholtz equation

(∆ + k2)u(x) = 0 (1.2)

for x ∈ P \ Ω . On the obstacle boundary Γ , we have

∂u
∂n

= −
∂uin

∂n
, (1.3)

where ∂
∂n is the outward normal derivative. Finally, on the interface, we assume a standard impedance condition on the total

field of the form:

∂utot

∂n
− iαutot

= 0. (1.4)

Since the interface is the x-axis, we have ∂
∂n = −

∂
∂y . In physically-motivated problems, an impedance condition is typically

used to approximate a more complicated wave/surface interaction, such as scattering from a rough surface, an underlying
porousmedium, a complicated surface coating, etc. (see [1,2]). Inmany applications,α = βk, with 0 ≤ β ≤ 1. The parameter
β in this context is called the surface admittance. In general, depending on the physical model, β can be real or complex. For
the purposes of this paper, we will assume that α ∈ C, with Re(α) ≥ 0, Im(α) ≥ 0, |α| ≤ |k|, and leave aside any further
discussion of themodeling. The Green’s function analysis of the present paper can be generalized to other values ofα, butwe
restrict our attention to α in the indicated range for the sake of simplicity. A second simplification is that we only consider
the case of constant α (i.e. we do not permit α to vary along the length of the half-space interface). There is a substantial
literature on impedance problems and we mention only a few relevant papers which also discuss the computation of the
corresponding Green’s function. These include [3–11].

Returning now to the scattering problem (1.2)–(1.4), an ansatz for the solution is to represent the total field as

utot(x) =


Γ

gk,α(x, y) σ (y) dsy + uin(x), (1.5)

where s is arc length alongΓ , gk,α(x, x0) is theGreen’s function for the half-space P with homogeneous impedance boundary
conditions, and uin(x) = gk,α(x, x0). Imposing the Neumann conditions (1.3) on Γ yields the Fredholm integral equation of
the second kind:

−
1
2
σ(x) +


Γ

∂

∂nx
gk,α(x, y) σ (y) dsy = −

∂

∂nx
gk,α(x, x0) (1.6)

for x ∈ Γ . Eq. (1.6) is invertible except for a countable sequence of spurious resonances {kj}. Resonance-free, but more
complicated representations are well-known [5], which we will not review here, since we are primarily interested in the
question of how to efficiently evaluate the impedance Green’s function gk,α itself. In our examples, we will always assume
k ∉ {kj} and that Eq. (1.6) is solvable. Note that, by using the impedance Green’s function in the integral representation, the
infinite half-space boundary does not need to be discretized.

Algorithms for the computation of gk,α date back to the classical work of Sommerfeld, Weyl, and Van der Pol [12,13,11],
who developed both what are now referred to as the Sommerfeld integral and the method of complex images. For more
recent treatments of this problem, see [14–16,8,10,17].

The main contribution of the present work is the observation that a finite number of real images can accurately capture
the high-frequency components of the Sommerfeld integral. This leads, naturally, to a hybrid representation of the Green’s
function in terms of a rapidly converging Sommerfeld-type representation, augmented with O(log(1/d)) real images for
each source point that lies a distance d from the impedance interface. Our approach is somewhat related to that of Cai and
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