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h i g h l i g h t s

• A numerical scheme for interface reconstruction of grating shapes in a two-dimensional acoustic medium is proposed.
• The algorithms are stabilized by casting the problem as a constrained quadratic optimization problem.
• Numerical simulations demonstrate the enhanced stability and accuracy of the new approach even in the presence of noise.

a r t i c l e i n f o

Article history:
Received 16 November 2012
Received in revised form 15 April 2013
Accepted 28 May 2013
Available online 5 June 2013

Keywords:
Boundary perturbations
Operator expansions
Linear acoustics
Regularization
Quadratic optimization

a b s t r a c t

Grating scattering is a fundamental model in remote sensing, electromagnetics, ocean
acoustics, nondestructive testing, and image reconstruction. In this work, we examine the
problem of detecting the geometric properties of gratings in a two-dimensional acous-
tic medium where the fields are governed by the Helmholtz equation. Building upon our
previous Boundary Perturbation approach (implemented with the Operator Expansions
formalism)we derive a new approachwhich augments thiswith a new ‘‘smoothing’’ mech-
anism. With numerical simulations we demonstrate the enhanced stability and accuracy
of our new approach which further suggests not only a rigorous proof of convergence, but
also a path to generalizing the algorithm to multiple layers, three dimensions, and the full
equations of linear elasticity and Maxwell’s equations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Grating scattering is a fundamentalmodel in remote sensing [1], electromagnetics [2], ocean acoustics [3], nondestructive
testing [4], and image reconstruction [5]. In a recent paper [6] we devised a Boundary Perturbation technique (based upon
the Operator Expansions – OE –[7,8] formalism) for approximating solutions of two related problems in these fields: (1)
the ‘‘forward problem’’ of simulating scattering returns of known incident radiation interacting with a grating of known
structure; and (2) the ‘‘inverse problem’’ of recovering the grating structure given data about both the incident and scattered
radiation. In this work we augment and, as we shall see, vastly improve our approach to (2) with the addition of a
‘‘smoothing’’ mechanism similar in spirit (though not identical to) classical Tikhonov regularization [9].

As with the OEmethod as it was originally designed byMilder [7,10–12] andMilder and Sharp [13,14], our new approach
is spectrally accurate (i.e., has convergence rates faster than anypolynomial order) due to both the analyticity of the scattered
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fields with respect to boundary perturbation, and the optimal choice of spatial basis functions which arise naturally in the
methodology. Our inversion strategy was originally inspired by the work of Nicholls and Taber [15,16] on the recovery of
topography shape under a layer of an ideal fluid (e.g. the ocean) which also uses the explicit nature of the OE formulas to
great effect.

This contribution ismost similar in spirit to thework of Ito and Reitich [17]who considered the sameproblem in a similar,
but not identical, framework. They employed the Field Expansions [18–20] method as the underlying ‘‘forward solver’’, and
used a regularization to realize greater stability. By contrast, we use the Operator Expansions [7,8] formalismwhich not only
has different numerical properties (see, e.g., [21,22]), but also features formulas where the interface deformation appears
explicitly which, as we demonstrate in Sections 4.2 and 4.4, lead to elegant and easily-derived inversion formulas. In addi-
tion, our regularization features a slightly different cost functional to be minimized which leads to a constrained quadratic
optimization problem rather than a more general nonlinear one. While this comes at the cost of greater demands placed
upon the measurement of the far-field data, it is rewarded with a vastly simplified numerical procedure (the ‘‘Null Space
Method’’ of Quadratic Programming [23]) which involves inversion of easily precomputed matrices without line searches,
derivative calculations, conjugate gradient implementations, nonconvexities, etc.

Other approaches to this problem have, of course, been considered and we refer to Ito and Reitich’s [17] paper and
the classical texts of Colton and Kress [24,25,9] for extensive lists. We mention that most of these are based upon
Integral Equation (IE) formulations requiring explicit knowledge of the Green’s function. These methods, like our Boundary
Perturbation approach, are accurate and efficient as they posit surface unknowns and are spectrally accurate. However, we
mention that our current approach is clearly advantaged compared to IE methods in two aspects:

1. for the periodic problemswe consider here IE approachesmust faithfully compute the periodizedGreens function (e.g., via
Ewald summation) which is not only technically challenging, but also introduces an additional discretization parameter
thereby significantly increasing the computational cost. (See the extensive discussion in [26] for a full discussion of these
matters together with suggestions to minimize these issues.) Due to the Fourier basis functions utilized by our scheme,
these quasiperiodic solutions are computed ‘‘by default’’ at no additional cost.

2. as we mentioned above, the impetus for using the Operator Expansions formalism is due to the fact that the boundary
deformations and their powers appear explicitly in this formulation. As with the Field Expansions recursions, the
boundary shape appears in the IE formulation in a rather implicit fashion rendering the identification of formulas akin
to those in Section 4 impossible.

Specific to the simulation of the scattered field from a grating using IEmethods,most recentlywe are aware of thework of
Arens and Grinberg [27] on the ‘‘Complete FactorizationMethod’’ as applied to periodic gratings, the iterative regularization
method of Hettlich [28], and the papers of Bruckner et al. [29–31] on the generalization of the Kirsch–Kress optimization
method to gratings. In this latter work, [29,31] focused upon Integral Equation formulations, while [30] modified these
approaches to the Finite Element framework. We also point out the work of Kress and Tran [32], Akduman, Kress, and
Yapar [33], Lahcene and Gaitan [34], and the bibliographies of these.

The organization of the paper is as follows: in Section 2 we recall the governing equations, including a discussion of
relevant unknowns (Section 2.1). In Section 3 we discuss the forward problem with relevant expansions presented in
Section 3.1 followed by brief numerical results in Section 3.2. In Section 4 we discuss the particulars of the inverse problem
and review our previous Boundary Perturbation approach to this problem, specifically we give a formula for themean depth
in Section 4.1, a linear approximation for the perturbation shape in Sections 4.2 and 4.3, and a nonlinearly corrected version
in Section 4.4. We describe our new, regularized version of this algorithm in Section 5, with the principal ideas for a linear
algorithm in Section 5.1, precise details in Section 5.3 (inspired by the procedures for Constrained Quadratic Programming
which we recall in Section 5.2), and a new regularized nonlinear correction given in Section 5.4. We close with extensive
numerical results in Section 6.

2. Governing equations

In this contributionwe focus on the problem of recovering the interface of a two-dimensional acousticmedium overlying
an impenetrable, periodic solid.Without loss of generality we assume that observationsmay bemade at y = 0, the interface
is ‘‘centered’’ at the (unknown) level y = ḡ < 0, and has (unknown) deviation g(x) such that

ḡ + g(x) < 0,

see Fig. 1.
For simplicity we focus upon the case of a ‘‘sound soft’’ lower material, isonified from above by time-harmonic incident

radiation

ui(x, y) = eiαx−iβy.

It is well known that the scattered field, u = u(x, y), is governed by the Dirichlet problem [2,6]

1u + k2u = 0 y > ḡ + g(x) (2.1a)
∂yu − (iβD)u = 0 y = 0 (2.1b)
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