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h i g h l i g h t s

• Stroh formalism for two-dimensional subsonic motion of anisotropic quasicrystals.
• At most three subsonic surface wave speeds in anisotropic quasicrystals.
• At most one surface wave in half-space for a traction-free and insulating surface.
• At most two subsonic surface wave speeds for a traction-free and conducting surface
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a b s t r a c t

We present the Stroh formalism for two-dimensional subsonic steady-state motion of
anisotropic quasicrystals. Using this new formalism and a series of identities and proper-
tieswhich follow,we investigate subsonic surface and interfacial waves in anisotropic qua-
sicrystals. Our results suggest that there exist at most three subsonic surface wave speeds.
This interesting observation is quite different from the unique surface wave speed known
for anisotropic crystals. The degenerate case of decagonal quasicrystalline materials is dis-
cussed in detail.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of surface waves in anisotropic elastic crystals has a long history (see, for example, [1–7]) which includes the
derivation of many excellent theoretical results concerning the uniqueness and existence of surface waves in anisotropic
crystals. Brief reviews and comments on these results can be found in [5,8]. A counterpart of the surface wave propagating
along the surface of a half-space is the so-called edge wave propagating along the edge of a thin plate [9,10]. Interestingly,
both surface and edge waves in anisotropic media can be investigated by means of the Stroh method: the surface wave
in anisotropic solids can be studied by means of the standard sextic formalism [6,8], whilst the edge wave in Kirchhoff
anisotropic plates can be addressed using a newly developed Stroh-like octet formalism [11,10]. The major difference be-
tween surface and edge waves lies in the fact that if a subsonic surface wave exists it is unique [3,8] whereas there can exist
at most two edge-wave speeds [10].

Quasicrystals, which were first discovered by Shechtman et al. [12] nearly two decades ago, possess a type of ordered
structure characterized by crystallographically disallowed long-range orientational symmetry and by long-range quasi-
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periodic translational order. These materials exhibit very unusual features including a very high electrical and thermal
resistivity, increased hardness and brittle behavior at room temperature which make them extremely attractive in a wide
range of existing and emerging applications. In this paper, we begin (in Section 2) by extending the Stroh formalism for two-
dimensional elastostatics of anisotropic quasicrystals [13,14] to subsonic steady-state motion of anisotropic quasicrystals.
Some identities and properties necessary for our subsequent theoretical development are derived in Section 3. In Section 4
we investigate subsonic surfacewaves in anisotropic quasicrystals and arrive at the interesting result that there exist atmost
three subsonic surface wave speeds. Interfacial waves in anisotropic quasicrystalline bimaterials are discussed in Section 5.
Finally the degenerate case of decagonal quasicrystalline materials is discussed in detail in Section 6.

2. Stroh formalism for steady-state motion

2.1. Reduction to elastostatic equations

In a fixed rectangular coordinate system xi (i = 1, 2, 3), let ui, wi be the phonon and phason displacements and
σij (σij = σji),Hij (Hij ≠ Hji) be the phonon and phason stresses, respectively, in an anisotropic quasicrystalline material.
The stress–strain law and the equations of motion are [15]

σij = Cijkluk,l + Rijklwk,l, Hij = Rklijuk,l + Kijklwk,l,

σij,j = ρüi, Hij,j = 0,
(1)

where ρ is the mass density, comma and dot denote differentiation with respect to xi and time t , respectively, Cijkl are the
elastic constants in the phonon field, Kijkl, are the elastic constants in the phason field and Rijkl are the phonon–phason
coupling constants. In addition Cijkl, Rijkl and Kijkl possess the following symmetry:

Cijkl = Cjikl = Cklij = Cijlk, Rijkl = Rjikl, Kijkl = Kklij. (2)

In writing Eq. (1), we have neglected the dissipation associated with the atomic rearrangements [16]. For a steady state
motion in the x1-direction with a constant speed v > 0, the displacements take the following forms

ui = ui(x1 − vt, x2, x3), wi = wi(x1 − vt, x2, x3), (3)

from which one can obtain

u̇i = −vui,1, üi = −vu̇i,1. (4)

If we introduce the following notations

σ̂ij = σij + ρvu̇iδj1,

Ĉijkl = Cijkl − ρv2δikδj1δl1,
(5)

where δij is the Kronecker delta, Eq. (1) can be rewritten as

σ̂ij = Ĉijkluk,l + Rijklwk,l, Hij = Rklijuk,l + Kijklwk,l,

σ̂ij,j = 0, Hij,j = 0,
(6)

which are identical to the stress–strain law and equilibrium equations for elastostatics [14].

2.2. The Stroh formalism

For two-dimensional deformations in which ui and wi depend only on x̂1 = x1 − vt and x2, the general solutions can be
expressed as

u =

u1 u2 u3 w1 w2 w3

T
= Af(z) + Āf(z),

8 =

Φ1 Φ2 Φ3 Ψ1 Ψ2 Ψ3

T
= Bf(z) + B̄f(z),

(7)

where

A =

a1 a2 a3 a4 a5 a6


, B =


b1 b2 b3 b4 b5 b6


,

f(z) =

f1(z1) f2(z2) f3(z3) f4(z4) f5(z5) f6(z6)

T
,

zi = x̂1 + pix2, Im {pi} > 0, (i = 1–6),

(8)
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