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a b s t r a c t

The purpose of this paper is to investigate the fundamental problem of the non-uniform
subsonic motion of a point force and of line forces in an unbounded, homogeneous,
isotropic medium in analogy to the electromagnetic Liénard–Wiechert potentials. The
exact closed-form solutions of the displacement field and of the elastic fields produced by
the point force and the line forces are calculated. The displacement fields can be identified
with the elastodynamic Liénard–Wiechert tensor potentials. For a non-uniformly moving
point force, we decompose the elastic fields into a radiation part and a non-radiation part.
We show that the solution of a non-uniformly moving point force is the generalization
of the Stokes solution towards the non-uniform motion. For line forces, the mathematical
solutions are given in the form of time integrals and, therefore, their motion depends on
the history.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An important item in elastodynamics is concernedwith the radiation and thewaves produced by the non-uniformmotion
of body forces. This is a fascinating and interdisciplinary research topic. The radiation problem has attracted the interest of
researchers from different fields such as appliedmathematics, material science, continuummechanics, and seismology (see,
e.g., [1–5]). A fundamental question is: what is the elastic radiation caused by non-uniformly moving point forces?

In elastostatics, the so-called Kelvin problem concerns the displacement field and the elastic fields produced by a static
point force. In elastodynamics the displacement field generated by a time-dependent concentrated point load was first
presented by Stokes [6] (see, e.g., [1,4,7]). In the Stokes problem, the body force is considered as a concentrated load of
time-dependent magnitude. The Stokes solution can be considered as the first mathematical model of an earthquake [8].
Concentrated line forceswith time-dependentmagnitudewere studied by Achenbach [1] and deHoop [9]. Thewave-motion
caused by a line force moving non-uniformly in a fixed direction was considered by Freund [10]. A non-uniformly moving
line force in an anisotropic elastic solid was studied by Wu [11].

The radiation problem of point forces is three dimensional, so Huygens’ principle prevails. Using the Helmholtz
decomposition, the so-called retarded potentials were given for the waves produced by body forces in elastodynamics (see,
e.g., [1,2]). A more general expression for the retarded potential in elastodynamics was given by Hudson [3]. Elastodynamic
fields propagate with finite velocities. There always is a time delay before a change in elastodynamic conditions initiated at
a point of space can produce an effect at any other point of space. This time delay is called elastodynamic retardation.

In electrodynamics, radiation is caused by the non-uniformmotion of an electric point charge. The electric and magnetic
potentials of such a non-uniformly moving point charge are called the Liénard–Wiechert potentials. The corresponding
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electric and magnetic field strengths consist of velocity-dependent fields and acceleration-dependent fields. The latter
are the fields of radiation. This is a standard topic in electromagnetic field theory and is covered in a lot of books on
electrodynamics (e.g. [12,13]). It is quite surprising that nothing has been investigated in this direction in the elastodynamics
of moving point forces. No solution of a non-uniformly moving point force analogous to the Liénard–Wiechert potential can
be found in standard books on elastic waves (e.g. [1,2,14,15,3–5]).

The purpose of the present paper is to investigate the fundamental problem of the non-uniformmotion of a point force as
well as line forces in an unbounded, homogeneous, isotropic medium in analogy to the electromagnetic Liénard–Wiechert
potentials. We consider subsonic motion. The paper is organized as follows. In Section 2, we present the framework of
elastodynamics and we formulate the equation of motion. In Section 3, using the three-dimensional elastodynamic Green
tensor, we calculate the elastodynamic Liénard–Wiechert potential of a point force. In Section 4, using the Liénard–Wiechert
potential of a point force, we determine the elastic distortion and the velocity fields (particle velocity) of themedium caused
by the non-uniformly moving point force. In addition, we specify the radiation fields proportional to the acceleration of the
point force. The limit to the Stokes solution is performed in Section 5. The static limit of the displacement field and of the
elastic fields of a non-uniformlymoving point force is given in Section 6. In Section 7, using two-dimensional Green tensors,
we give the general solution of two-dimensional non-uniformly moving line forces. We close the paper with conclusions in
Section 8.

2. The elastodynamic equation of motion

In elastodynamics [7], the force balance law reads1

ṗi − ∂jσij = Fi, (1)

where p, σ, and F are the linear momentum vector, the force stress tensor, and the body force vector. In the theory of linear
elasticity, the momentum vector p and the stress tensor σ can be expressed in terms of physical state quantities, namely,
the velocity vector (particle velocity) v = u̇ and the elastic distortion tensor β = (grad u)T of the medium, which can be
derived from a displacement vector u by means of the following constitutive relations:

pi = ρ vi = ρ u̇i, (2)
σij = Cijkl βkl = Cijkl ∂luk, (3)

where ρ denotes the mass density and Cijkl is the tensor of elastic moduli. The tensor Cijkl possesses the following symmetry
properties:

Cijkl = Cjikl = Cijlk = Cklij. (4)

If we substitute the constitutive relations (2) and (3) in Eq. (1), we obtain the force balance law expressed in terms of the
displacement vector u:

ρ üi − Cijkl∂j∂luk = Fi. (5)

The solution of Eq. (5) can be represented as a convolution integral in space and time. In an unbounded medium, and
under the assumption of zero initial conditions, which means that u(r, t0) and u̇(r, t0) are zero for t0 → −∞, the solution
of u reads

ui(r, t) =

 t

−∞


∞

−∞

Gij(r − r ′, t − t ′) Fj(r ′, t ′) dr ′ dt ′. (6)

Here, Gij is the elastodynamic Green tensor of the anisotropic Navier equation defined by
δik ρ ∂tt − Cijkl∂j∂l


Gkm = δim δ(t)δ(r), (7)

where δ(·) denotes the Dirac delta function and δij is the Kronecker delta. The tensor of elastic moduli for isotropic materials
is given by

Cijkl = λ δijδkl + µ

δikδjl + δilδjk


, (8)

where λ and µ are the Lamé constants. Substituting Eq. (8) in Eqs. (5) and (7), we obtain respectively the isotropic Navier
equations for the displacement vector

δij ρ ∂tt − δij µ ∆ − (λ + µ) ∂i∂j

uj = Fi, (9)

and for the elastodynamic Green tensor
δij ρ ∂tt − δij µ ∆ − (λ + µ) ∂i∂j


Gjm = δim δ(t)δ(r), (10)

where ∆ denotes the Laplacian.

1 Spatial differentiation is denoted by ∂j ≡ ∂/∂xj , and for differentiation with respect to time t we use the notation ṗi ≡ ∂tpi .
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