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a b s t r a c t

An inverse source problem which aims to determine the source density p0(x) taking
place in the wave equation ∆p(x, t) − (1/c2)∂2p(x, t)/∂t2 = −p0(x)δ′(t) is considered.
One assumes that p0(x) is a function of bounded support while p(x, t) can be measured
on the boundary S of a convex domain D during a certain finite time interval [0,T]. An
explicit expression of the solution is given in terms of the surface integral of the data
on S. Two illustrative examples show the applicability as well as the effectiveness of the
method. In one of these examples S consists of a spheroid while in the other it consists
of a half of the spheroid and a disc. The problem is motivated by photo-acoustic and
thermo-acoustic applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider the wave equation

∆p(x, t) −
1
c2

∂2

∂t2
p(x, t) = −p0(x)δ′(t) (1)

satisfied by the wave function p(x, t) ∈ C2(R3
× R) under the radiation conditions to be stated later on for |x| → ∞. Here

x = (x1, x2, x3) ∈ R3 and t ∈ R stand for any point in three-dimensional space and time, respectively, while c is a positive
constant (the propagation velocity of the wave). The function appearing on the right hand side, i.e. p0(x)δ′(t), is the time-
derivative of the source density, which excites the wave. In the problem to be considered here, p0(x) ∈ L1(V0) is assumed
to be a function of bounded support with support V0 ⊂ R3 while δ(t) is the classical Dirac distribution. In a direct problem
the source density p0(x) is assumed to be known and one tries to find the wave function p(x, t) for all x ∈ R3 and t ∈ R. But
here, in the inverse source problem that we will consider, the situation is converse: we will assume that the wave function
p(x, t) is known (by measurements) during certain time interval [0, T ] on a surface S, which involves the region V0 inside,
and try to determine the source density p0(x). The result will also reveal the support V0 where the source is located.

The inverse problem stated abovewasmotivated by the so-called photo-acoustic and thermo-acoustic tomographieswhich
have important applications in medicine. So there is extensive research and many publications on the subject (see for
ex. [1–11] and references cited there). In tomographic applications the above-mentioned support V0 consists of an
anomalous (for example cancerous) domain in a soft biological region. Then the surface S is the boundary of a soft
biological region. Although the latter may have various shapes, to the best of our knowledge almost all previous theoretical
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investigations are devoted to very simple but unsuitable shapes. Among them we can mention, for example, the regions
bounded by two parallel infinitely large planes or infinitely long circular cylinders or spheres, which require quite different
reconstruction formulas (see for ex. [4–10]). The aim of the present paper is to consider a more general and plausible case
where the shape of the region bounded by S is arbitrary but convex, and give an exact formula which needs the surface
integration of the data collected on S during a finite time interval. Our result is an extension of those due to Xu and
Wang [9,10]. In [9] the authors consider three particular cases separately: (i) a region bounded by two parallel planes, (ii) a
region bounded by an infinitely long circular cylinder, and (iii) a region bounded by a sphere. To carry out computations, they
use expansions (in the form of infinite series or integrals) involving exponential, Bessel and Legendre functions, respectively.
In the present work we give a unified most general and rather simple expression in terms of a surface integral.

Inwhat followswewill assume that the reflection of the field p(x, t)(=the pressure) on S (=the boundary of the biological
medium) is negligibly small, which permits us to formulate the problem in the whole of the space. This assumption may be
tolerable in biological applications where the tissue is soft and the velocity of propagation of the pressure wave is moderate.
In the casewhere this assumption is notmet, one has to reconsider the problemwith transmission type boundary conditions,
which, to the best of our knowledge, constitutes an open problem although in the open literature there are very few available
papers devoted to this type of investigations (see for ex. [12]).

Since the solution of the inverse problem is always based on the solution to the direct problem, in order tomake the paper
self-contained, in what follows we will first consider the direct problem and derive an explicit expression for its solution
(see Section 2). Then in Section 3 we will obtain the exact results pertinent to the inverse problem. In Section 4 we will
propose an algorithm which may be appropriate to numerical implementation. Two illustrative examples which show the
applicability as well as the effectiveness of themethod are given in Section 5. Finally, in Section 6 one recapitulates themain
results obtained here and one indicates some open problems which merit of investigation.

In our discussion the Fourier integral transform as well as the distribution concept will play important roles. To denote
the Fourier transform of a function f (t) ∈ L1(−∞, ∞), we will use a hat on the letter f , namely:

⌢

f (ω) =


∞

−∞

f (t) eiωtdt, ω ∈ (−∞, ∞). (2a)

It is known that at every point t where f (t) is continuous, (2a) is inverted uniquely as follows:

f (t) =
1
2π


∞

−∞

⌢

f (ω)e−iωtdω, t ∈ (−∞, ∞). (2b)

As to the distributions, a widely used one is the Dirac distribution δ(t) and some of its generalizations, namely:

tδ′(t) = −δ(t), (3a)
⌢

δ = 1, (3b)
⌢

δ′
= −iω (3c)

and

∆


e±ikR

R


+ k2


e±ikR

R


= −4πδ(x − y)

= −4πδ(x1 − y1)δ(x2 − y2)δ(x3 − y3). (4a)

Here R stands for the distance between the points x = (x1, x2, x3) and y = (y1, y2, y3):

R = |x − y| =


(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2. (4b)

From (3c) we also write
∞

−∞

e±ikRωdω = −(±2π i)δ′


R
c


,


∞

−∞


e−ikR

− eikR

ωdω = 4π iδ′


R
c


, (4c)

where k = ω/c while R is given by (4b).

2. Solution of the direct problem

Let us take the Fourier transform of both sides of (1) with respect to t . Owing to the definition (2a) and known relations
(3b), we get

∆
⌢
p (x, ω) + k2

⌢
p (x, ω) = iωp0(x), x ∈ R3. (5)
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