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We study the continuity of the maximum-entropy inference map for two observables in finite

dimensions. We prove that the continuity is equivalent to the strong continuity of the set-valued

inverse numerical range map. This gives a continuity condition in terms of analytic eigenvalue

functions which implies that discontinuities are very rare. It shows also that the continuity of

the MaxEnt inference method is independent of the prior state.
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1. Introduction

The maximum-entropy principle, going back to Boltzmann, is one of the standard
techniques in quantum mechanical inference problems [2, 15, 16, 39, 48] and state
reconstruction [6, 40]. Here we consider a tuple of quantum observables, represented
by hermitian matrices in the algebra Md of complex d × d-matrices, d ∈ N. Their
expected values provide partial information about the state of a quantum system.
Several states may have the same tuple of expected values, so an inference rule
is needed to select a unique state from its expected values. The maximum-entropy
inference map selects the state with maximal von Neumann entropy.

The maximum-entropy inference map is continuous if the observables com-
mute [45], an example being the inference of probability distributions from expected
values of random variables. Surprisingly, discontinuity points exist in the noncom-
mutative case on the boundary of the set of expected values [47]. They have been
discussed as signatures of quantum phase transitions [8] and are passed [32, 46] to
a correlation quantity, called irreducible correlation [23, 49], which is useful, beside
the topological entanglement entropy, to characterize topological order [18, 25].

The methods to analyze discontinuities have included information topology [44],
convex geometry [32, 45], and, for two observables, numerical range techniques [32].
Here, we focus on the case of two observables which we encode into a single matrix
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A ∈ Md as its real part ℜ(A) := 1
2
(A+A∗) and imaginary part ℑ(A) := 1

2i
(A−A∗),

a notation which we will meet again in Section 6. The set of density matrices in
Md is denoted by

Md := {ρ ∈ Md | ρ � 0, tr(ρ) = 1}.

This set is also called state space [1], a � 0 means that the matrix a ∈ Md is
positive semi-definite. The state space is a convex body, that is a compact convex
subset in a Euclidean space. The inner product 〈a, b〉 := tr(a∗b), a, b ∈ Md , and
the norm ‖a‖2 :=

√
〈a, a〉 shall be used.

Elements of Md represent states of a quantum system, see for example [4],
Sections 5.1 and 5.2. The real number tr(ρa) = 〈ρ, a〉, for an observable a ∈ Md

and for ρ ∈ Md , is interpreted as the expected value of a when the system is in
the state ρ. The map ρ 7→ 〈ρ, A〉 will be used with various restrictions. Since the
simplest notation for a restricted map is to use a single-letter function symbol, we
define the expected value functional

EA : {b ∈ Md | b∗ = b} → C, a 7→ 〈a, A〉,

on the Euclidean space of hermitian matrices. The map EA sends a state ρ ∈ Md

to the pair EA(ρ) = (〈ρ, ℜ(A)〉, 〈ρ, ℑ(A)〉) of expected values of the observables
ℜ(A) and ℑ(A), in the identification of the range C with R

2.

The domain of the maximum-entropy inference map is the convex body

LA := {EA(ρ) | ρ ∈ Md} ⊂ R
2,

comprising the expected value pairs of ℜ(A) and ℑ(A). We call LA convex support
[32, 45, 47] by its name in probability theory [3]. The von Neumann entropy of
a state ρ ∈ Md is S(ρ) = −tr(ρ · log ρ) and the maximum-entropy inference is the
map

ρ∗
A : LA → Md, α 7→ argmax{S(ρ) | ρ ∈ Md,EA(ρ) = α}.

See [15, 16] for more information about ρ∗
A. Our analysis will be based on [45,

Theorem 4.9], which affirms that for all α ∈ LA

ρ∗
A is continuous at α if, and only if, EA|Md

is open at ρ∗
A(α). (1.1)

Thereby, a function between topological spaces is open at a point in the domain,
if the image of every neighborhood of that point is a neighborhood of the image
point. Clearly, every linear map is open in finite dimensions but it may fail to be
open when restricted.

Exact bounds on the number of discontinuity points of ρ∗
A are known for d ≤ 5,

see Sections 6 and 7 of [32]. The bounds have been derived from pre-image results
[20] of the following map fA. The aim of this article is to go beyond these
pre-image results and to establish a direct link to a continuity problem in operator
theory [10, 21, 24]. Denoting by SCd the unit sphere of C

d , the numerical range
map of a matrix A ∈ Md is defined by

fA : SCd → C, x 7→ 〈x, Ax〉.
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