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We introduce a new conserved quantity, Normalized Energy Density (NED), alternative to the
conventional definition of energy for a layered structure in a 2D SH problem. NED is defined by
the average of power of a half transfer function multiplied by the impedance, and the
conservation across the material interface is analytically proved for a two-layered case. For
three, four, and ten-layered cases, the conservation is examined by applying the Monte Carlo
simulation method, and then NED is supposed to be conserved through the layers.
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1. Introduction

Conserved quantities, such as mass, momentum and energy, in elasto-dynamic problems are the fundamental variables when
analyzing wave propagation in a continuous medium. In addition, the balance principles associated with these quantities, e.g., the
balance of mass and the balance of momentum, govern the deformation within the framework of Newtonian mechanics. The
balance of energy is one of the principles used to quantify the seismic energy radiated from an earthquake source.

Radiation energy E is theoretically defined as the total energy transmitted through a certain surface, S, as follows:

E = −∫
∞

0
dt∫

S
σ ij−σ0

ij

� �
u̇injdS; ð1Þ

where σij and σij
0 are the tentative and the initial stress tensors, respectively. u̇i is the particle velocity, and nj is a normal vector of

the surface S. When a particular region, e.g. a seismic fault, generates all of the energy, the integration on the arbitrary surface S
surrounding the region is theoretically conserved even for a general heterogeneousmedium. The above representation has already
been introduced by Love [1]. The energy of seismic events was first applied by Richter [2] in order to measure the size of
earthquakes by using the local magnitude scale (ML), although it was not exactly equal to the definition of the energy. Afterward,
[3] proposed the use of moment magnitude (MW), defined from the seismic moment that is related to the energy release during
the events, whose energy is different from the radiation energy (Eq. (1)). A detailed discussion on radiation energy is introduced
by Kostrov and Das [4], Fukuyama [5], and Abercrombie et al. [6].

If a seismic wave through the surface S is approximated by a single plane wave, either a P- or an S-wave propagated in a
uniform direction, the energy for the P-wave case, Eα, and that for the S-wave case, Eβ, are represented as follows:

Eα = ∫
∞

0
dt∫

S
ραu̇2

α linidS; Eβ = ∫
∞

0
dt∫

S
ρβu̇2

β linidS; ð2Þ
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where ρ, α and β are the density, the P-wave velocity, and the S-wave velocity, respectively. u̇α and u̇β are the amplitudes of
particle velocity for the P-wave and the S-wave, respectively. li is a vector representing the direction of the wave propagation. The
energy density, defined by the integrand, is a product of the square of the particle velocity and the impedance. Note that the total
energy for a generalwavefield, represented by the superposition of the P- and the S-waves, is not equal to Eα+Eβ (see AppendixA).

A part of the energy integrated on the shrunken area of S is utilized as a principle of energy conservation when all of the input
energy is confined in a certain region, so-called “ray tube” [7]. The energy on the cross-sectional area of the tube is theoretically
conserved. Here, we focus on the layered structure. At the interface, part of the energy for the input wave is transmitted, and the
rest is reflected. Then, both the transmitted and the reflected waves should be considered in order to apply the energy
conservation in the ray tube. As shown in Fig. 1, the sum of the transmitted energy and the reflected energy is equal to the input
energy. However, the total input energy cannot be observed in only the opposite layer because the transmitted energy is part of
the input energy. Therefore, the energy is not conserved across the interfaces. Note that some researchers apply the energy,

directly defined by∫
∞

0
ρcu̇2dt; to the layered structure (e.g., Kokusho andMotoyama [8]), however, they do not pay attention to the

fact that the quantity is not conserved. If a quantity conserved over the layer structure exists, absorbed energy in propagating in
the layer might be estimated, directly. The quantification of the absorbed energy helps to understand the hysteretic damping due
to anelasticity, e.g. Q-factor, and the soil nonlinearity, as discussed by Kokusho and Motoyama [8].

In this article, we introduce a quantity, Normalized Energy Density, which is an alternative to the conventional definition of
energy, and discuss the features of the 2D SH problem. The quantity is analytically discussed for the two-layered case, and
numerically examined for multi-layered cases.

2. Two-layered case

The theoretical implementation starts from the waves, vertically propagated into a simple two-layered structure. Only 2D SH
waves, which have an antiplane amplitude with respect to the plane, are considered here. The structure consists of a horizontal
layer, Layer #1, with a thickness of h and a half space basement, Basement #0. The S-wave velocity and the density are β1 and ρ1 for
Layer #1 and β0 and ρ0 for Basement #0, as shown in Fig. 2. An incident planewave propagates vertically into Layer #1 through the
interface between Layer #1 and Basement #0. Each layer keeps elasticity independent of the wave amplitude.

Fig. 1. Ray tube at the material interface and the energy conservation.

Fig. 2. Two-layered model.
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