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Helical structures are designed to support heavy loads, which can significantly affect the
dynamic behaviour. This paper proposes a physical analysis of the effect of axial load on the
propagation of elastic waves in helical beams. The model is based on the equations of motion of
loaded helical Timoshenko beams. An eigensystem is obtained through a Fourier transform
along the axis. The equations are made dimensionless for beams of circular cross-section and
the number of parameters governing the problem is reduced to four (helix angle, helix index,
Poisson coefficient, and axial strain). A parametric study is conducted. The effect of loading is
quantified in high, medium and low-frequency ranges. Noting that the effect is significant in
low frequencies, dispersion curves of stretched and compressed helical beams are presented
for different helix angles and radii. This effect is greater as the helix angle increases. Both the
effects of stress and geometry deformation are shown to be non-negligible on elastic wave
propagation.
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1. Introduction

Helical structures are used in many engineering applications. Typical examples are helical springs, widely used in automotive
and aeronautic industry, and steel multi-wire cables, largely encountered in civil engineering. These structures are usually
subjected to large loads.

For the design of helical springs, several studies have been conducted to understand the dynamic behaviour and calculate the first
vibration modes. First without considering the effect of applied loads, the computation of vibration modes of helical beams with
circular cross-section has been performed based on analytical but approximate solutions [1], the finite element methods [2] or the
assumed mode method [3] for instance. Another approach is the transfer matrix method, employed in [4,5]. An efficient numerical
method for predicting thenatural frequencies of helical springshas beendeveloped in [6]. Thedynamic stiffnessmethodhas beenused
byPearson andWittrick [7] tofindan exact solution for vibration of helical springswith the Euler–Bernoullimodel. Lee and Thompson
[8] used the same method, but with the Timoshenko beammodel.

However, the first vibration modes of helical springs correspond to low-frequency motions, which are strongly affected by the
presence of applied axial loads. The vibration analyses of springs have hence been extended to account for load effects on the
natural frequencies thanks to the finite elementmethod [9], the dynamic stiffnessmatrix [8] or the transfermatrixmethod, used in
[10,11]. However, as noticed in [12,17], Pearson's equations [10] do not reduce to equations for simpler rods when load terms are
included. All these studies show the importance of considering axial loads, compressive in the analyses, for the computation of
natural frequencies.

As far as elastic wave propagation is concerned, the literature on helical waveguides is rather scarce. An analytical beam
model [13] as well as more general numerical approaches [14,15] has been recently proposed. In [16], a semi-analytical finite
element method has also been proposed for the analysis of guided wave propagation inside multi-wire helical waveguides,
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typically encountered in civil engineering. However, these studies neglect the presence of applied loads, whose effect remains
unexplored on guided waves.

The aim of this paper is to investigate the effect of axial loads on the propagation of guided modes in helical waveguides. For
simplicity, multi-wire waveguides are not considered and the model is based on the equations of motion of Timoshenko loaded
helical beams. Such a model is not valid at high frequencies, when high order modes become propagating, but constitutes a first
step and can serve as a reference solution before the development of fully three-dimensional models, as done in [14–16] without
loads. A space Fourier transform along the helical axis is performed, yielding a wave propagation eigensystem whose zero
determinant corresponds to the dispersion relationship. The equations are made dimensionless for beams of circular cross-
sections. The problem is then governed by four parameters, which are the helix angle, the dimensionless radius (helix index), the
dimensionless axial load (axial strain) and the Poisson coefficient.

The applied loads act on the dynamics through two effects: the deformation of the geometry and the stress generated inside the
structure. Both effects are included in the present analysis. The deformed helix parameters are calculated using a non-linear
model.

A parametric study is conducted in order to highlight the effect of axial loads, compressive or tensile, on waves for various helix
angles and radii. Three frequency ranges are distinguished. A branch identification of dispersion curves is given for a better physical
understanding of the different modes existing in helical waveguides. The effects of stress and deformation are also compared.

2. Model

2.1. Equations of motion for dynamics

One considers a helical beamwith a circular cross-section of radius r. The helix centreline is defined by its pitch angleα0 and radius
R0 in the unloaded state. In the loaded state, the spring is subjected to a static axial force P and the pitch angle and radius becomeα and
R respectively (see Fig. 1). The curvature κ and torsion τ are given by κ=cos2 α/R and τ=sin α cos α /R. The Serret–Frenet basis
en; eb; etð Þ associated with the helix is shown in Fig. 1, where en, eb and et respectively denote the normal, binormal and tangent unit
vectors. In this coordinate system, the static force is written as [0, P cosα, P sin α] and the static moment as [0,−P R sin α, P R cos α].
P is taken positive when tensile.

In the framework of Timoshenko beam theory, the general equations governing the small perturbations of a helical beam
subjected to a static axial load P are given by the following set of 12 equations which relate the forces and moments to the
displacements and rotations [11,12,17]:
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Fig. 1. Helical spring under axial load.
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