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A well-established nonlinear continuum model of time-independent electrodiffusion describes
the migrational and diffusional transport of two ionic species, with equal and opposite valences,
across a liquid junction. The ionic charge densities provide the source for a static electric field,
which in turn feeds back on the charges to contribute the migrational component of the ionic
transport. Underpinning the model is a form of the second Painlevé ordinary differential equation
(PII). When Bécklund transformations, extended from those known in the context of PII, are
applied to an exact solution of the model first found by Planck, a sequence of exact solutions
emerges. These are characterized by corresponding ionic flux and current densities that are
found to be quantized in a particularly simple way. It is argued here that this flux quantization
reflects the underlying quantization of charge at the ionic level: the nonlinear continuum model
‘remembers’ its discrete roots, leading to this emergent phenomenon.
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1. Introduction

Many examples are known of simple structures and patterns, now commonly
called emergent phenomena, appearing in the analysis of complex, nonlinear systems
[1-5]. Two examples are pertinent here. The first is the modeling of the nerve
impulse and its propagation by Hodgkin and Huxley [6, 7]. The second is the theory
of solitons and their interactions, developed by Seeger et al. for the sine-Gordon
equation in the context of crystal dislocations [8], and subsequently by Zabusky
and Kruskal for the Korteweg—de Vries equation in the context of waves in various
nonlinear dispersive media [9].

Here we present a further case arising in a simple continuum model of steady
electrodiffusion, governed by coupled nonlinear ordinary differential equations. It has
connections with the two well-known examples cited. Nerve conduction proceeds by
processes of electrodiffusion, albeit involving more ionic species than in the case
we consider here, and the model we discuss is underpinned by Painlevé’s second
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nonlinear ordinary differential equation (PII), known to be intimately related by
similarity reductions to soliton equations [10].

Since the pioneering works of Nernst [11] and Planck [12], transport of charged
ions across liquid junctions has played a fundamental role in a variety of natural
systems. Nerve conduction has been mentioned but there are many others [13].
An extension of the Nernst—Planck model [14-16] incorporates the effect of the
electric field that develops within a junction in response to diffusional separation
of ions carrying different charges. Essential to what follows is the nonlinearity that
results as the electric field acts back on the charged ions to contribute a convective
component to the ionic transport.

Recent analysis of the model [17-19] has highlighted the role played by
the second Painlevé nonlinear differential equation (PII), its exact solutions, and
associated Bicklund transformations [20]. A remarkable phenomenon has emerged
in this analysis [19], whereby ionic flux and electric current densities appear with
evenly-spaced ‘quantized’ values associated with sequences of solutions of the model,
generated by Bicklund transformations from a given solution.

Our intention here is to show, in the context of sequences of exact rational
solutions, that this effect, which has been called [19] “Bécklund flux-quantization”,
is a reflection of the quantization of electric charge at the level of the individual
ions involved in transport across the junction.

Thus it can be said that the classical continuum model, through its nonlin-
ear structure, ‘remembers’ its discrete roots, and displays them in this emergent
phenomenon.

2. The model

In its simplest form, the extended model deals with steady transport in one
dimension of two ionic species carrying equal and opposite charges across a liquid
junction occupying 0 < x < §, between reservoirs of well-stirred ionic solutions
occupying x < 0 and x > §. Concentrations of the positively and negatively charged
species are modeled as continuous—indeed, once differentiable—functions c(x) and
c_(x), respectively.

The governing system of ordinary differential equations (ODEs) is [15]

ey () = (ze/kpT) E(x) i (x) — &4 /D,
e_'(x) = —(ze/kyT) E@) c_(x) — d_/D_,
E'(x) = (4nze/e) [c1 (x) — c_(1)] ()

for 0 < x < 6. Here ®,, ®_ denote the steady (constant) flux densities in the
+x-direction of the two species, Dy, D_ their diffusion coefficients, and z their
common valence, while E(x) denotes the induced electric field, kg Boltzmann’s
constant, e the electronic charge, ¢ the electric permittivity, and 7 the ambient
absolute temperature within the solution in the junction. An important auxiliary
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