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h i g h l i g h t s

• Inverse problems for 5th and 6th order nonlinear wave equations are studied.
• The problems use measurements of characteristics of solitary waves.
• The uniqueness of solutions is shown and direct algorithms are deduced.
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a b s t r a c t

Inverse problems to recover coefficients of the fifth order KdV equation, sixth order gen-
eralized Boussinesq equation (SGBE) and two sixth order equations occurring in the dy-
namics of multiscale microstructure are considered. It is proposed to use characteristics of
solitary waves for solving the inverse problems. The uniqueness of the solutions is shown
and solution algorithms are provided. Several numerical examples are presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A general method to reconstruct coefficients of a partial differential equation (PDE) frommeasured states consists in the
minimization of a proper cost functional. This procedure is often very time-consuming due to the necessity to incorporate
global search techniques and is evenmore involved in the case of a nonlinear PDE of higher order, because the latter one has
to be solved with high accuracy in each step of the minimization. Therefore, search for more direct and effective solution
algorithms is motivated. To this end, simple waveforms may be useful.

In nonlinear dispersive media (e.g. shallowwater, plasma, microstructuredmaterials) solitary waves occur under proper
conditions. This has been proved mathematically and observed experimentally [1–5]. Usage of solitary waves simplifies the
inverse problem, because a PDE is replaced by an ordinary differential equation (ODE). Moreover, in particular cases even
more effective direct algorithms may be found instead of the cost functional minimization.

A novel method for solving the inverse problems was proposed in [6,7] in order to recover coefficients of a 4th order
equation and a coupled system that govern the motion of the microstructured material of Mindlin type. This method is
based onmeasuring the characteristics of solitary waves and in such a way data related to nonlinearities at bothmacro- and
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microlevel as well as to dispersion are obtained. The method was generalized to periodic waves in [8]. In this paper also the
cost functional minimization technique was compared with a direct usage of characteristics of solitary and periodic waves
for the solution of inverse problems. The results convince in the efficiency of the latter method.

The class of mathematical models for describing the microstructured solids is certainly wider than analyzed in [6–8].
In the present paperwe generalize thismethod to higher, namely 5th and 6th order nonlinear dispersive equations. More

precisely, we consider the fifth order KdV equation, the sixth order generalized Boussinesq equation and two sixth order
equations that occur in the theory of multiscale microstructure. All these equations can be reduced to a common canonical
equation for the solitary wave, hence can be analyzed in the same framework.

We pose inverse problems to recover coefficients of these equations using amplitudes and lengths of solitary waves
measured at given levels. The main tasks are to show the uniqueness of the solutions of these problems and find effective
solution algorithms. A novel approach is proposed that combines analytical arguments and a numerical verification of the
hypotheses that lie under those arguments to achieve these aims. Finally, the solution procedure is illustrated by numerical
examples and the sensitivity with respect to errors of the data is discussed.

2. The 5th order KdV equation. Canonical equation

Let us consider the 5th order KdV equation

vt + α1(v
2)x + α2vxxx − α3vxxxxx = 0. (1)

This model occurs in many applications, e.g. capillary–gravity water waves, chains of coupled oscillators, magneto-acoustic
waves in plasma [9–11]. The coefficients αi are related to properties of the physical medium under consideration. Supple-
ment with the fifth order term enables to overcome the short-wave instability that occurs in the usual KdV model. Inverse
problemsmay be used to verify the relevance of this model for particular media. Namely, in case the solutions of the inverse
problem corresponding to different data approximately coincide, the model is relevant, otherwise not.

The solitary wave is a solution of (1) satisfying the conditions

v(x, t) = w(x − ct), c − constant,

w(j)(ξ) → 0 as |ξ | → ∞, j = 1, . . . , 4.
(2)

Parameter c is the velocity. Inserting v(x, t) = w(x − ct) into (1) we get the following equation for the solitary wave:
−cw′

+ α1(w
2)′ + α2w

′′′
− α3w

V
= 0.

Integration yields
−cw + α1(w

2)+ α2w
′′
− α3w

IV
= 0.

Let us go over to a canonical form introducing new variables
w(ξ) = sΦ(η) with η = σξ, (3)

where s and σ are constants defined by the following relations via αi:

σ 2
=
α2

α3
, s =

α3

α1
σ 4. (4)

In this connection we assume that α2α3 > 0. Introducing the additional parameter

ϑ =
c

α3σ 4
, (5)

the equation forΦ takes the form of the following one-parametric 4th order ODE:

Φ IV
− Φ ′′

− Φ2
+ ϑΦ = 0. (6)

The solitary waves of (1) are obtained by rescaling of localized solutions (homoclinic orbits) of the canonical equation (6).
It is known that (6) may have one- and multi-pulse localized solutions [12]. For the parameter ϑ in the interval 0 < ϑ ≤

1
4

unique one-pulse solution exists [13]. (The uniqueness is understood to the accuracy of the constant shift of the argument.)
The solution ismonotonic, i.e. the inequalitiesΦ ′ > 0 if η < 0 andΦ ′ < 0 if η > 0 hold for the centered at η = 0 solution. In
case ϑ > 1

4 also unique one-pulse solution exists [1,13], but it is non-monotonic (has slightly oscillating tails). An analytical
formula for the one-pulse solution is known only in the case ϑ =

36
169 ∈ (0, 1

4 ). Then

Φ(η) =
105
338

sech4


η

2
√
13


.

In case ϑ > 1
4 also infinitely many multi-pulse localized solutions occur and in case ϑ ≤ 0 no one-pulse solutions exist

[1,13,12]. The condition ϑ > 0 for the existence of one-pulse solitary wave in terms of the original parameters and velocity
takes the form

cα3

α2
2
> 0. (7)
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