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h i g h l i g h t s

• A finite difference (FD) method for elastic wave scattering by cracks was proposed.
• Stick and frictionless contact conditions may be implemented in the FD method.
• Higher-harmonic generations due to crack face contact were simulated numerically.
• Scattered shear waves can be a rich source of information on the contact condition.
• The FD method is useful for simulations of ultrasonic testing of closed cracks.
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a b s t r a c t

This paper presents a finite difference time-domain technique for 2D problems of elastic
wave scattering by crackswith interacting faces. The proposed technique introduces cracks
into the finite differencemodel using a set of split computational nodes. The split-node pair
is bound togetherwhen the crack is closedwhile the nodesmove freelywhen open, thereby
a unilateral contact condition is considered. The development of the open/close status is
determined by solving the equation of motion so as to yield a non-negative crack opening
displacement. To check validity of the proposed scheme, 1D and 2D scattering problems
for which exact solutions are known are solved numerically. The 1D problem demonstrates
accuracy and stability of the scheme in the presence of the crack-face interaction. The 2D
problem, in which the crack-face interaction is not considered, shows that the proposed
scheme can properly reproduce the stress singularity at the tip of the crack. Finally,
scattered fields from cracks with interacting faces are investigated assuming a stick and
a frictionless contact conditions. In particular, the directivity and higher-harmonics are
investigated in conjunction with the pre-stress since those are the basic information
required for a successful ultrasonic testing of closed cracks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When a solid–solid interface in imperfect contact is subjected to an incident wave, scattered waves with both excitation
(fundamental) and higher-harmonic frequencies are generated due to a nonlinear interaction of the interface [1]. In the field
of ultrasonic nondestructive testing (NDT), this nonlinear phenomenon is called the contact acoustic nonlinearity (CAN),
and has been studied theoretically and experimentally. Buck et al. [1] measured the second harmonic wave generated at

∗ Corresponding author. Tel.: +81 862518933.
E-mail address: kimoto@cc.okayama-u.ac.jp (K. Kimoto).

http://dx.doi.org/10.1016/j.wavemoti.2014.09.007
0165-2125/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.wavemoti.2014.09.007
http://www.elsevier.com/locate/wavemoti
http://www.elsevier.com/locate/wavemoti
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wavemoti.2014.09.007&domain=pdf
mailto:kimoto@cc.okayama-u.ac.jp
http://dx.doi.org/10.1016/j.wavemoti.2014.09.007


K. Kimoto, Y. Ichikawa / Wave Motion 52 (2015) 120–137 121

an aluminum–aluminum interface as a function of contact pressure. They also observed a second harmonic generation due
to an interaction between surface waves and micro fatigue cracks in an aluminum alloy. Cantrell et al. [2] showed that
the second harmonic is excited by fatigue-inducedmicro cracks in an aluminum alloy in response to longitudinal ultrasonic
waves.Moreover, they found that a nonlinearity parameter defined as a ratio of the 2nd to the 1st harmonic amplitude grows
monotonicallywith an increase in fatigue cycles. Kawashima et al. [3] demonstrated that a CAN-based ultrasonic imaging can
be a powerful tool in detecting and characterizing defects which are not visible to classical linear ultrasound. For example,
they showed that higher-harmonics can detect a fiber/matrix debonding, which is considered as a fracture process zone of a
matrix cracking in a CFRP laminate. They also showed that micro voids at a diffusion bond interface can be visualized only in
higher-harmonic images because the bond interface strongly reflects thewaves of the excitation frequency. Feasibility of the
higher harmonic imaging has been demonstrated at a larger scale. Yun et al. [4] used aluminum blocks with polished, partly
indented but otherwise planar surfaces to form a partially contacted aluminum–aluminum interface. They used a synthetic
aperture focusing technique to visualize the interface and showed that the contacted portion of the interface appears only
in the higher-harmonic images.

Several models have been proposed to explain the mechanism of harmonic generation due to CAN. Richardson [5] used
a one-dimensional model of semi-infinite elastic bars to investigate the harmonic generation and its excitation efficiency.
The bars are assumed to be in unilateral contact where only a compressional stress is transmitted, while tensile motion at
the interface creates a gap with vanishing traction. Imperfect interfaces have also been modeled by an interfacial stiffness
(e.g., [6,7] and the references therein) which requires continuity in the stress while allowing the displacement to be
discontinuous. Nagy [7] reviewed the theoretical and experimental results relevant to this problem to conclude that the
transverse reflection coefficients at imperfect interfaces can be used to distinguish a kissing bond from a partial bond
interface. Margetan et al. [6] used the interfacial stiffness concept in conjunction with a quasi-static model and successfully
reproduced a measured, frequency dependent reflection coefficient in a low-frequency regime. It is known however that
the linear interfacial stiffness does not excite higher harmonics upon reflection and transmission of elastic waves. To make
the interfacial stiffness concept more complete, Biwa et al. [8] introduced a quadratic form interfacial stiffness having
pressure dependent linear and second order (nonlinear) stiffness constants. Based on the experimental findings given in
foregoing researches such as [9], they assumed that the linear stiffness is related to the ambient pressure by a power law
and derived an expression for the second-order stiffness. The 1st and 2nd harmonic amplitudes are obtained thereafter by
solving the governing, 1D, nonlinear wave equation by a perturbation technique. Biwa’s 1D model was extended further by
Nam et al. [10] to a planar infinite interface subjected to an obliquely incident plane wave. Their model was validated by
comparing measured and theoretical 2nd harmonic amplitudes.

Because of the nonlinearity of the problem, it is rather difficult to obtain exact elastodynamic solutions for higher
harmonic generations except in a very simple setting (e.g., 1D medium with a gap subjected to a monochromatic incident
wave). It is hence necessary to use a numerical method to solve more general scattering problems involving interacting
interfaces. One of the numerical methods which has been used for this purpose is boundary element method (BEM).
Mendelsohn and Doong [11] formulated the scattering problem as a time-domain boundary integral equation for 2D, in-
and anti-plane waves. Cracks were modeled by mutually non-penetrating faces which support a Coulomb friction force.
They solved the integral equation for the anti-planewave numerically, and obtained scattered fields from a surface breaking
crack. The in-plane problemwas solved byHirose [12] using a time-domain BEMbased on ahyper-singular integral equation.
Generation of higher-harmonics in the presence of pre-stress was clearly demonstrated. Hirose and Achenbach [13] applied
their boundary element technique to a 3D problem in which a penny-shaped crack with contacting faces is excited by
a normally incident plane L-wave. Some authors used FEM to solve similar scattering problems. Delrue and Abeele [14]
simulated dynamic response of a circular delamination in a composite material. They modeled the interaction between the
delaminated surfaces by amulti-linear interfacial stiffnesswith a viscous damper. A commercial finite element platformwas
used for their numerical analysis, and harmonic generations were investigated. Blanloeuil [15] considered a scattering by a
crack whose faces are in unilateral contact bearing a Coulomb friction force. The numerical solver used was a finite element
based on a penalty method although the numerical implementations were scarcely detailed. Harmonic generations by an
obliquely incident P- and SV-wave of various intensities were simulated trying to gain insights into CAN.

In this study, a finite-difference time domain (FDTD) method is proposed for analyses of the elastodynamic scattering by
a crack with interacting faces. The finite difference (FD) method has not been applied to stress analyses of cracked media
as often as FEM and BEM because it is widely believed that the stress singularity at the crack tip cannot be reproduced
accurately unless highly elaborated scheme is used [16]. However, it has been shown by Masserey and Mazza [17] that a
FD with staggered grids and split nodes on the crack faces can cleverly reproduce the singular stress field. Motivated by
their work, the FDTD for linear elastodynamics is used in this study with the split computational nodes in order to develop
a numerical technique useful for the analyses of CAN involving either cracks or interfaces. The FDTD based on the 1st order
PDE system is used in this study because Masserey’s approach based on the 2nd order system suffers some difficulties in
developing an explicit scheme when crack-faces interact.

The major disadvantage of FD methods is inflexibility in the model geometry, which can be remedied to some extent
by refining the mesh. On the other hand, well-studied stability properties, straightforward numerical implementations,
computational efficiency, and the scalability are great advantages. Those advantages are highlighted if a time domain BEM
was employed as a numerical solver. It is known that the stability of the time-domain BEM is problem dependent and
in general not good [18]. For example, exterior Neumann and Dirichlet problems have different stability properties [19].
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