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h i g h l i g h t s

• A novel hybrid scheme for the Benjamin equation is constructed.
• Accuracy and stability properties are shown.
• Evolution properties are validated with solitary wave simulations.
• Collisions and stability properties of solitary waves are studied.

a r t i c l e i n f o

Article history:
Received 28 May 2014
Received in revised form 1 September 2014
Accepted 28 October 2014
Available online 5 November 2014

Keywords:
Benjamin equation
Solitary waves
Hybrid finite element-spectral method

a b s t r a c t

In this paperwe consider the Benjamin equation, a partial differential equation thatmodels
one-way propagation of long internal waves of small amplitude along the interface of two
fluid layers under the effects of gravity and surface tension. We solve the periodic initial-
value problem for the Benjamin equation numerically by a new fully discrete hybrid finite-
element/spectral scheme,whichwe first validate bypinningdown its accuracy and stability
properties. After testing the evolution properties of the scheme in a study of propagation of
single- andmulti-pulse solitarywaves of the Benjamin equation,we use it in an exploratory
mode to illuminate phenomena such as overtaking collisions of solitary waves, and the
stability of single-pulse, multi-pulse and ‘depression’ solitary waves.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we will consider the Benjamin equation

ut + αux + βuux − γHuxx − δuxxx = 0, (1.1)

where u = u(x, t), x ∈ R, t ≥ 0, α, β, γ , δ are positive constants, and H denotes the Hilbert transform defined on the real
line as

H f (x) :=
1
π
p.v.


∞

−∞

f (y)
x − y

dy

or through its Fourier transform asH f (k) = −i sign(k)f (k), k ∈ R.
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The Benjamin equation, cf. [1–3], is a model for internal waves propagating under the effect of gravity and surface tension
in the positive x-direction along the interface of a two-dimensional system of two homogeneous layers of incompressible,
inviscid fluids consisting at rest of a thin layer of fluid 1 of depth d1 and density ρ1 lying above a layer of fluid 2 of very large
depth d2 ≫ d1 and density ρ2 > ρ1. The upper layer is bounded above by a horizontal ‘rigid lid’ and the lower layer is
bounded below by an impermeable horizontal bottom.

It is further assumed that the following physical regime of interest is to be modelled: Let a be a typical amplitude and
λ a typical wavelength of the interfacial wave. The parameters ϵ = a/d1 and µ = d21/λ

2 are assumed to be small and sat-
isfy µ ∼ ϵ2 ≪ 1; it is also assumed that capillarity effects along the interface are not negligible. Under these assumption
(1.1) was derived in [1] from the two-dimensional, two-layer Euler equations in the presence of interface surface tension
by dispersion relation arguments. The variables in (1.1) are nondimensional and scaled, and the coefficients are given by

α =


ρ2 − ρ1

ρ1
, β =

3
2
αϵ, γ =

1
2
α
√
µ
ρ2

ρ1
, δ =

αT
2gλ2(ρ2 − ρ1)

,

where T is the interfacial surface tension and g the acceleration of gravity. The variables x and t are proportional to distance
along the channel and time, respectively, and u(x, t) denotes the downward vertical displacement of the interface from its
level of rest at (x, t). The interfacial surface tension T is assumed to bemuch larger than g(ρ2−ρ1)d21. (For a further discussion
of the physical regime of validity of (1.1) cf. [3].) Note that if the parameter δ is taken equal to zero, (1.1) reduces to the
Benjamin–Ono (BO) equation, [4,5], while, if we put γ = 0we obtain the KdV equation with negative dispersion coefficient.

It is well known, cf. [1], that sufficiently smooth solutions of (1.1) that vanish suitably at infinity preserve the functionals

m(u) =


∞

−∞

udx, (1.2)

I(u) =
1
2


∞

−∞

u2dx, (1.3)

E(u) =


∞

−∞


β

6
u3

−
1
2
γ uHux +

1
2
δu2

x


dx. (1.4)

Global well-posedness in L2 for the Cauchy problem and also for the periodic initial-value problem for (1.1) was established
in [6].

In this paper we will study (1.1) numerically, paying particular attention to properties of its solitary-wave solutions.
These are travelling-wave solutions of the form u(x, t) = ϕ(x − cst), cs > 0, such that ϕ and its derivatives tend to zero as
ξ = x − cst approaches ±∞. Substituting this expression in (1.1) and integrating once we obtain

(α − cs)ϕ +
β

2
ϕ2

− γHϕ − δϕ′′
= 0, (1.5)

where ′
= d/dξ , and the operator H is defined by H := H∂x, i. e. byHf (k) = |k|f (k), k ∈ R. We will assume that α− cs > 0.

If we perform the change of variables

ϕ(ξ) = −
2(α − cs)

β
ψ(z), z =


α − cs
δ

ξ,

in (1.5), we see that the solitary-wave profile ψ(z) satisfies the ordinary differential equation (o.d.e.)

ψ − 2γ̃Hψ − ψzz − ψ2
= 0, z ∈ R, (1.6)

where

γ̃ =
γ

2
√
δ(α − cs)

. (1.7)

This change of variables and the resulting Eq. (1.6) was used in [1,2], and [3]. (In these references γ̃ is denoted by γ .) In
his papers Benjamin showed that for each γ̃ ∈ [0, 1), there exists a solution ψ of (1.6) which is an even function of z with
ψ(0) = maxz∈R ψ(z) > 0. He also argued by formal asymptotics that for each γ̃ ∈ [0, 1) there is a bounded interval
centred at z = 0, in which ψ oscillates (with the number of oscillations increasing as γ̃ approaches 1), while outside this
interval he concluded in [2] that |ψ | decays like 1/z2. In addition, in the same paper he outlined an orbital stability theory
for these solitary waves for small γ̃ . In [3] a complete theory of existence and orbital stability of the solitary waves for small
γ̃ was presented. Further issues of existence and rigorous asymptotics of the solitary waves of (1.1) and related equations
were explored in [7]. In [8] concentration compactness arguments were used to establish existence and a weaker version of
stability of the solitary waves of (1.1) for 0 < γ̃ < 1.

In this paper we will employ the solitary-wave equation in the form (1.5). As a result, normally the solitary waves will
have negative maximum excursions from their level of rest.

Since explicit formulas for the solitary waves of the Benjamin equation are not known (except when one of γ or δ is
set equal to zero), one must resort to approximate techniques for their construction. The presence of the nonlocal terms in
(1.1) and (1.5), which have a handy Fourier representation in the periodic case as well, naturally suggests using spectral-
typemethods for approximating their solutions. The preceding discussion of the Benjamin equation applies to its associated
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