
Wave Motion 51 (2014) 886–904

Contents lists available at ScienceDirect

Wave Motion

journal homepage: www.elsevier.com/locate/wavemoti

Weakly nonlinear wave interactions in multi-degree of
freedom periodic structures
Kevin L. Manktelow, Michael J. Leamy ∗, Massimo Ruzzene
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta,
GA 30332-0405, USA

h i g h l i g h t s

• We analyze elastic wave interactions in nonlinear, periodic materials.
• We consider multi-degree of freedom and multidimensional systems.
• Wave interactions allow for novel control of wave direction and group velocity.
• Wave interactions suggest superprism, focusing, and multiplexing applications.
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a b s t r a c t

This work presents a multiple time scales perturbation analysis for analyzing weakly
nonlinear wave interactions in multi-degree of freedom periodic structures. The
perturbation analysis is broadly applicable to (discretized) periodic systems in any
dimensional space andwith awide range of constitutive nonlinearities. Specific emphasis is
placed on cubic nonlinearity, as dispersion shifts typically arise from the cubic components
in nonlinear restoring forces. The procedure is first presented in general. Then, application
to the diatomic chain andmonoatomic two-dimensional lattice demonstrates, individually,
the treatment of multiple degree of freedom systems and higher dimensional spaces.
The dispersion relations are modified by weakly nonlinear wave interactions and lead to
additional opportunities to control wave propagation direction, band gap size, and group
velocity. Numerical simulations validate the expected dispersion shifts. An amplitude-
tunable focus device demonstrates the viability of utilizing dynamically-introduced
dispersion to produce beam steering that may, ultimately, lead to a phononic superprism
effect as well as multiplexing/demultiplexing behavior.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Periodic structures exhibit dispersive wave propagation whereby the phase and group velocities are frequency-
dependent. In addition towavedispersion, periodic structures often exhibit frequency bandswhere elasticwavepropagation
is prohibited in one or more directions. Such frequency bands are termed bandgaps. Mechanical systems designed to
explicitly utilize these unique filtering properties to control the propagation of elastic energy are usually termed phononic
crystals [1]. Phononic crystal devices such as wave guides and resonators are generally formed from the strategic periodic
arrangement of unit cells [2,3]. Crystal lattice planes and graphene sheets also exhibit lattice periodicity where nonlinear
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restoring forces may arise from inter-atomic attraction and repulsion. Waves in linear elastic periodic structures are
generally termed Bloch waves (or Floquet–Bloch waves). Frequency-domain analysis for such structures results in a Bloch
wave dispersion relation which can be used to locate bandgaps and energy propagation directions (group velocity). Thus,
the dispersion relation is a critical tool in designing and analyzing phononic crystals and other periodic structures.

A complication arises when the governing wave equation contains nonlinear terms that may result from constitutive
laws or finite displacements (i.e., material or geometric nonlinearity). In these situations, traditional Bloch wave analyses
are not strictly applicable. Despite this complication, numerical and experimental evidence suggests that Bloch-like waves
propagate in periodic structures with weak nonlinearities [4,5]. Unlike Bloch wave propagation in a linear system, the
dispersive properties vary according to the local amplitude [6]. Thus, the location of band gaps, group velocity magnitude,
and even thedirection of energy propagation are all amplitude-dependent [7,8]. The samedispersion amplitude-dependence
appears in crystal lattices where semi-empirical interatomic potentials (e.g., Born–Meyer, Lennard-Jones) contribute
nonlinear stiffness terms [9].

The concept of a wave’s amplitude influencing its own propagation characteristics is often referred to as self-action [10].
The effects of self-action have been predominantly investigated in nonlinear optics and electromagnetics literature where
they have been linked to soliton solutions, harmonic generation, self-focusing and defocusing, phase modulation, and pulse
compression [11–13]. Most efforts consider the effects of wave propagation in homogeneous material, although some have
investigated self-action in periodic optical and elastic structures [13–16]. Self-action in nonlinear elastic structures, such as
phononic crystals and atomic lattices, has recently been investigated using a perturbation approach designed specifically for
weakly nonlinear Bloch wave propagation [17,18]. However, because solutions to nonlinear wave equations are amplitude-
dependent, these self-action analysis methods often break down when the frequency content of the solution contains more
than one dominant component.

Multi-harmonic excitations result in nonlinear wave interactions which give rise to sum-and-difference frequencies,
cross-phase modulation, and frequency conversion among other effects [11,12]. Thus, the introduction of additional waves
into a phononic device can control or alter the behavior of the systembeyond the effects of self-action. Nonlinearwave–wave
interactions and their effect on dispersion in the monoatomic chain were considered in [19]. It was shown that the each
primary harmonic in the wave solution obeys a fundamentally different dispersion curve. The Bloch wave-based multiple
scales perturbation analysis method developed in [19] was validated through extensive numerical simulation. In the
monoatomic chain, the propagation velocity depended on the wavenumber and amplitude (in addition to physical system
parameters).

Nonlinear wave interactions in two-dimensions and multi-degree of freedom (DOF) unit cells offer a fundamentally
different perspective for viewing tunability.Wave propagation in two dimensional systems exhibit directionality in addition
to other dispersion behaviors exhibited by one dimensional systems (1D). Directionality in 2D structures introduces
conceptually newopportunities such aswave beaming, spatial filtering, and imaging.Wave beaming in the two-dimensional
beam grillage was considered by Langley et al. in [20], while others have considered wave beaming in two-dimensional
cellular structures [21–24]. These more complicated spatial systems provide new tunable parameters: additional wave
vectors, amplitudes, and non-trivial wave modes. The idea that nonlinear wave interactions can enhance traits in two-
dimensional (2D) periodic systems has been exploredmore recently in the photonic crystal community. Panoiu et al. utilized
the Kerr nonlinearity with a pump/control wave to enhance the ‘‘superprism’’ effect, whereby the direction of propagation
in the photonic crystal is extremely sensitive to the wavelength and angle of incidence [25].

Robust tools and analysis methods for nonlinear wave–wave interactions in more general elastic periodic structures are
needed. Thus, the aim of the present research is to continue the development of the multiple scales perturbation presented
in [19] with the intent of realizing wave-tunable dispersion in multi-DOF unit cells, to include two-dimensional structures.
Previous multiple scales analysis methods have been restricted to single DOF systems with only a primary harmonic.
We circumvent these restrictions by providing a more general multiple scales analysis framework. After developing the
analysis method, it is applied to the diatomic chain with two DOF per unit cell to illustrate wave mode dependencies.
Then, the 2D anharmonic lattice is considered in order to explore wave directionality and tunability that results from
nonlinear wave–wave interactions for co-propagating, orthogonal, and oblique wave–wave interactions. Finally, a tunable-
focus concept device is presented as a potential application of nonlinear wave–wave interactions in phononic crystals.

2. Multiple scales analysis for wave interactions

We first review a Bloch-informed method of multiple scales [26–28] for analyzing wave propagation in periodic
structures, and then specialize the presented approach to analyze wave interactions in materials whose unit cells contain
multiple degrees of freedom and/or dimensions. Consider a general three-dimensional unit cell located at a lattice point
defined by the integers (p, q, r)which are associated with lattice vectors a1, a2, and a3. These indices (p, q, r) take the value
0 when referring to the central unit cell under consideration, and ±1 when referring to adjacent unit cells. The governing
equations for a single unit cell are first discretized (e.g., via finite difference approaches, finite element approaches, etc.) into
the form

Mü +


(p,q,r)

K(p,q,r)u(p,q,r) + εfNL

u(p,q,r)


= 0, (2.1)
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