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h i g h l i g h t s

• Head-on collision of solitons in coupled Korteweg–de Vries systems is characterized.
• The extended Poincaré–Lighthill–Kuo method is applied.
• Collision-induced phase shifts are evaluated for each propagation mode.
• The governing wave equation for collision-induced pulses is derived.
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a b s t r a c t

The extended Poincaré–Lighthill–Kuo (PLK)method is applied to characterize head-on col-
lisions of solitary waves in a coupled Korteweg–de Vries (KdV) system that has multiple
modes supporting solitons. As a simple physically realizable system, we investigate two
coupled electrical nonlinear transmission lines (NLTLs), and the proposedmethod success-
fully leads to the collision-induced phase shifts and the wave equation that governs the
dynamics of the pulses generated by colliding solitary waves.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Coupled nonlinear wave systems have been investigated for their variety of interacting solitary waves such as the
resonant and leapfrogging waves [1–3]. Generically, the weakly dispersive systems are well modeled by the coupled
Korteweg–de Vries (KdV) equations. One of the promising methods to obtain the dynamical behavior of coupled KdV
systems is the perturbative method. Actually, the perturbative method, which is based on the inverse scattering transform,
predicts well the leapfrogging frequency and the emission spectrum of radiation for 1-soliton solutions in KdV systemswith
appropriate couplings [2].

In this study, the collision of counter-traveling solitons in such a system is investigated. Unfortunately, the collisions
of counter-traveling solitons cannot be treated straightforwardly in the framework of such a perturbative approach,
because an exact solution corresponding to the counter-traveling solitons is lacking. Instead, we apply the extended
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Fig. 1. Two adjacent cells of a coupled NLTL.

Poincaré–Lighthill–Kuo (PLK)method [4]. This leads to explicit expressions for the nonlinearity and dispersion coefficients of
theKdVequation in physical dimensions,which governs the small amplitude solitons developed in the investigating physical
system and the collision-induced phase shift [5–10]. In coupled systems, the method is expected to describe inter-modal
interactions of nonlinear solitary waves quantitatively. It can be applied to any generic coupled nonlinear wave system.
Conversely, a system is chosen to apply the method in order to describe the procedure explicitly. As a simple physically
realizable example, two electrical nonlinear transmission lines (NLTLs) coupled by capacitors are considered.

When reversely biased, the Schottky diode operates as a capacitor whose capacitance depends on the terminal voltage
called the Schottky varactor. An NLTL is defined as a lumped transmission line containing a series inductor and a shunt
Schottky varactor in each section. NLTLs are known to simulate the Toda lattice [11]. Moreover, the operation bandwidth
of carefully designed Schottky varactors goes beyond 1 THz; therefore, they are employed in ultrafast electronic circuits
including the subpicosecond electrical shock generator [12]. Two NLTLs, denoted by lines 1 and 2, are coupled via mutual
capacitors. Because of the couplings, there develop two different propagation modes on a linear coupled line called the c
and π modes [13]. Each mode has its own velocity and voltage fraction between the lines. In general, a wave travels slower
when its wavelength becomes shorter owing to dispersion irrespective of the mode it is carried on [14]; this results in
distortions of the baseband pulses having short temporal durations. By introducing Schottky varactors, this distortion can
be compensated for by nonlinearity, regardless of the propagation mode. It has been found that the voltage fractions of the
c- and π-mode nonlinear pulses are identical with those of the linear c and π modes, respectively.

The extended PLK method leads to explicit expressions for the nonlinearity and dispersive coefficients of the KdV
equation, which governs the small amplitude solitons developed in coupled NLTLs and the collision-induced phase shift.
In contrast to frequently reported shallowwater or plasma systemswhere the dynamics of a single field variable is required
to be solved for every order of the perturbation expansion,wemust simultaneously solve the dynamics of two field variables,
corresponding to the voltages on lines 1 and 2. By examining the resulting complicated equations, we obtain the KdV
equation for the lowest-order field variables for both the c- and π-modes and the phase shift induced by the head-on
collision of two similar and dissimilar solitons. Moreover, it is found that the third-order field variables correspond to the
pulses generated by colliding solitons, whose governing wave equation is explicitly derived.

Although the procedure is developed in a specific system, itwould be equally applicable for other coupled nonlinearwave
systems, including two spatially separated plasma systems with electrostatic coupling [15]. The quantitative description of
the inter-modal pulse generation might be useful for all such systems.

In Section 2, we discuss the fundamental properties of a coupled NLTL including the structure and propagation
characteristics of linear waves. Section 3 is devoted to the head-on collision of two c-mode solitary waves. The collision of
two π-modewaves is obtained by the same procedure as in Section 3, whose summarized results are discussed in Section 4.
Next, the head-on collision of the c- and π-mode solitary waves is discussed in Section 5. Several numerical calculations are
carried out to validate the results obtained by the extended PLK method in Section 6.

2. Coupled NLTLs

Fig. 1 shows the equivalent representation of a coupledNLTL. For the line i (i = 1, 2), Li andCi represent the series inductor
and shunt Schottky varactor of the unit cell, respectively. Moreover, Cm shows the mutual capacitance between lines 1 and
2. Note that there are two ways to connect varactors to line 2. Fig. 1 shows the case where the anodes are connected to line
2. We should equally consider the reversed case, i.e., with the cathodes connected to line 2. Based on this circuit model, the
transmission equations of a coupled NLTL are given by [13]

L1
dIn
dt

= Vn−1 − Vn, (1)

L2
dJn
dt

= Wn−1 − Wn, (2)
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