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a b s t r a c t

Using a solution of the linearized Navier–Stokes equations, an approximate formula has
been derived for the damping rate of gravity waves in viscous fluids. The proposed
solution extends the results found by Lamb (1932) [5] for waves propagating in deep-
water conditions for large Reynolds numbers and those derived by Biesel (1949) [14]
undermore general hypotheses. Specifically, comparisonswith the Lamb solution highlight
large differences in intermediate and shallow depths and/or for moderate Reynolds
numbers while significant discrepancies are observed with the Biesel solution in deep-
water conditions. For these reasons, the proposed solution is of great importance for the
estimation of the viscous dissipations during the wave motion and represents a useful
benchmark for the validation of numerical solvers. With respect to this, the theoretical
findings have been compared with numerical simulations obtained by means of a well-
known Smoothed Particle Hydrodynamics solver.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The propagation of gravity waves is an important subject of research because of its applications to various problems and
phenomena connected to human works (e.g. coastal and environmental engineering, naval activities, renewable energies,
etc.). The greatest part of these phenomena is characterized by high Reynolds numbers (Re = H∗

0


g∗H∗

0/ν
∗ where H∗

0
is the fluid depth, g∗ is the gravity acceleration, ν∗ is the kinematic viscosity and stars give dimensional variables) and,
consequently, it is often described through the potential theory, that is, assuming that the fluid is inviscid and irrotational.
Despite this, dissipations may play an important role when the propagation occurs over long times or when the Reynolds
number is not so high. Then, a correct estimate of the dissipative effects turns out to be of fundamental importance for a
proper description of the gravity wave evolution.

Many numerical works have been devoted to this subject (e.g. Harlow & Welch [1], Haddon & Riley [2], Raval et al. [3],
just to cite a few). Conversely, a further theoretical inspection is still needed, as the largest part of the analytical results just
applies to gravity waves in deep-water conditions and with very low viscosity. The first attempts to estimate dissipative
effects date back to the works of Basset [4], Lamb [5] (first edition 1879, second edition 1895) and Boussinesq [6]. It is not
clear who was the first to find out the attenuation law for gravity waves but, nowadays, this solution is generally referred to
Lamb’s work. Lamb [5] derived a damping coefficient for the wave amplitude using the linearized Navier–Stokes equations.
His approach was based on the assumption that the water depth was infinite and that the viscosity was small. The same
result was found by Basset [4] who also tried an extension in finite depths. In this way, he was able to recover the exact
linear dispersion relation for thewave celerity but, due to the assumption of low viscosity, he exactly recovered the damping
coefficient of Lamb.
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Fig. 1. Sketch of the geometry (dimensionless variables): λ is the wave length, H is the still water depth and η(x, t) is the free surface. The dotted line
indicates the undisturbed free surface.

Over the years, the same assumptions (that is, deep-water conditions and low viscosity) have been used in several works
that confirmed the validity of Lamb’s result through different techniques/approaches. For example, Longuet-Higgins [7,8]
found Lamb’s coefficient by using a boundary layer model and inspecting the equivalence of this model with the theory on
weakly-damped waves by Ruvinsky & Freiman [9,10]. Lighthill [11] used the deep-water inviscid solution to approximate
the dissipative terms inside the kinetic energy equation for a viscous fluid. In this way, he obtained a damping coefficient
for the kinetic energy evolution that can be straightforwardly related to Lamb’s one. A more rigorous approach was adopted
by Wu et al. [12] to study the fluid motion inside a two-dimensional rectangular tank. Specifically, they solved an initial
condition problem for the linearized Navier–Stokes equations using a no-slip condition along the bottom and a free-slip
condition along the tank walls. The latter assumption was forced by some theoretical and numerical difficulties in imposing
a no-slip condition at the intersection between the free surface and the walls. Despite this, the damping rate predicted by
Wu et al. [12] coincides with that predicted by Lamb. More recently, a linear solution of the Navier–Stokes equation has
been used by Dias et al. [13] under the hypotheses of infinite depth. They also provided some insight into the action of
nonlinearities, showing that the damping rate predicted by Lamb can also be applied to weakly-nonlinear waves.

A significant improvement to Lamb’s findings was obtained by Biesel [14] who, thanks to an asymptotic expansion for
high Reynolds numbers, derived higher-order terms for the damping rate. Surprisingly, this work is not much refereed to in
the current scientific literature. The work of Biesel shows several similarities with the present analysis but, for deep water
conditions, it may still lead to an inaccurate prediction of the damping rate.

Incidentally, we highlight that a further subject of research relies on how to include dissipation inmodels which, usually,
do not account for viscous effects. For example, Liu & Orfila [15] derived a system of integro-differential depth-averaged
equations that includes dissipative effects due to the bottom boundary layer. Similarly, a viscous-potential formulation was
proposed in Dutykh&Dias [16] and further inspected in Dutykh [17] to account for these effects in standard potential theory.

The aim of the present work is to provide a further contribution to the study of viscous gravity waves, that is, waves
whose evolution is mainly driven by gravity. Specifically, our analysis is based on a solution of the linearized Navier–Stokes
equations over finite depths with a no-slip condition along the bottom. The main result is the derivation of approximate
expressions for the wave celerity and the damping rate. Indeed, these also hold true for gravity waves propagating in
intermediate- and shallow-water conditions and for Reynolds numbers that are not very large (e.g. Re ≥ 50). The latter
point makes these expressions also suitable for fluids other than water.

Forwaves propagating in deep-water conditionswith large Reynolds numbers, the leading order of the proposed solution
reduces to that derived by Lamb. In this case, the higher-order terms provide corrections which are generally small but not
negligible. Conversely, when the Reynolds number is not so high and/or the motion takes place in conditions that are far
fromdeepwater, the damping rate displays significant differenceswith respect to that predicted by Lamb. As a consequence,
the proposed solution may be important for the estimation of the viscous dissipations during the wave motion. Further, it
may be properly used as a benchmark for the validation of numerical solvers (see, for example, Carrica et al. [18]). With
respect to this latter topic, we propose some applications in the final part of the present work where the analytical results
are compared with the numerical outputs of a Smoothed Particle Hydrodynamics scheme (SPH hereinafter).

The paper is organized as follows: the analytical solution and the damping coefficient are described in Section 2 while
Section 3 contains applications and comparisons with the Lamb’s and Biesel’s solutions.

2. Approximate analytical solution for viscous gravity waves

Let us consider the evolution of viscous gravity waves propagating over finite depths. Fig. 1 displays a sketch of the
problem and of the Cartesian frame of reference, whose origin is at the undisturbed free surface with the y-axis pointing
upward. Hereinafter, the unstarred variables denote dimensionless quantities. We introduce the nonlinearity parameter
ϵ = 2A∗

0/H
∗

0 where H∗

0 is the reference depth in still-water conditions and A∗

0 is the wave amplitude. Accordingly, we use
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