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h i g h l i g h t s

• We derive new families of modal transparent boundary conditions for elastic waveguides, which have not been considered in the
literature.

• The benefit of using an overlap between the finite element domain and the modal domain is emphasized.
• We construct an original and particularly efficient transparent boundary condition.
• This transmission condition enhances the effect of the overlap and allows to handle arbitrary anisotropic materials.
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a b s t r a c t

We consider the time-harmonic problem of the diffraction of an incident propagative
mode by a localized defect, in an infinite elastic waveguide. We propose several iterative
algorithms to compute an approximate solution of the problem, using a classical finite
element discretization in a small area around the perturbation, and a modal expansion
in the unbounded straight parts of the guide. Each algorithm can be related to a so-
called domain decomposition method, with an overlap between the domains. Specific
transmission conditions are used, so that at each step of the algorithm only the sparse
finite element matrix has to be inverted, the modal expansion being obtained by a simple
projection, using a bi-orthogonality relation. The benefit of using an overlap between
the finite element domain and the modal domain is emphasized. An original choice of
transmission conditions is proposedwhich enhances the effect of the overlap and allows us
to handle arbitrary anisotropicmaterials. As a by-product, we derive transparent boundary
conditions for an arbitrary anisotropicwaveguide. The transparency of these newboundary
conditions is checked for two- and three-dimensional anisotropic waveguides. Finally,
in the isotropic case, numerical validation for two- and three-dimensional waveguides
illustrates the efficiency of the newapproach, compared to other existingmethods, in terms
of number of iterations and CPU time.
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1. Introduction

The development of non destructive testing techniques using ultrasonic guided waves (see [1,2] and the references
herein) motivates the improvement of existing numerical methods of simulation. In particular, efficient methods are
required to compute the scattering of guided waves by arbitrary defects in elastic waveguides. Classically, the waveguide
is supposed to be infinite and perfectly uniform, except in a bounded area containing the defect. A natural objective is to
reduce the finite element computations to a region as close as possible to this perturbed area. The difficulty is then to handle
the artificial boundaries of the finite element domain in order to avoid spurious reflections. This is an old problem [3] which
has been satisfactorily solved in case of scalar equations, but still raises open questions for vectorial equations arising in
electromagnetic or elastic waveguides. For scalar problems, two classes of methods can be used. Let us explain for each of
them what are the specific issues when considering elastic waveguides.

A first class of methods consists in putting on each side of the perturbed area a perfectly matched absorbing layer (PML),
so that the computed diffracted field almost vanishes at the end of the layer. This technique is easy to integrate in any Finite
Element code (no specific implementation is needed) and leads us to solve a classical sparse linear system. Unfortunately,
it is well-known that PMLs do not work in elastic waveguides [4] because of the existence in some range of frequencies of
backward modes, whose group and phase velocities are of opposite signs. In such configuration, the PMLs do not select the
correct outgoing solution. A remedy has been proposed and analyzed in [5] where the physical solution is reconstructed
a posteriori by combining several wrong fields computed with PMLs. An alternative consists in using adiabatic viscoelastic
absorbing layers [6] which are not perfectlymatched and need to be sufficiently large to avoid spurious reflections. Themain
drawback of this approach is then its computational cost. Also let us point out that absorbing layer techniques (perfectly
matched or not) require a fine adjustment of some parameters, whichmay limit their systematic use in an industrial context.
Let us finally mention a more recent method for elastic waveguides based on Hardy space infinite elements [7] whose
development is still in progress.

A second possibility consists in using the modal decomposition of the field outside the perturbed area to derive
transparent boundary conditions on the artificial boundaries of the finite element domain. The advantage is that such
conditions are exact (and with an exponentially small error at the discrete level if enough modes are kept in the modal
expansion). Different ways to implement such conditions have been proposed in the literature. In [8,9], a formulation
involving both finite elements and modal unknowns is derived, while only one type of unknowns is generally kept, modal
unknowns in [10,11] and finite elements unknowns in [12]. For the latter, the difficulty is due to a lack of orthogonality of
the displacement fields associated with elastic modes. As a consequence, it is not possible to obtain a diagonal expression
of the natural Dirichlet to Neumann operator (relating the normal stress to the displacement) in elastic waveguides. In
the isotropic case, an alternative has been proposed in [12] (see [13] for more details and [14,15] for applications), where
the authors derived transparent boundary conditions relating hybrid displacement/stress vectors. This work is based on a
bi-orthogonality relation, mixing displacement and stress components (which has been derived first by Fraser in 2D [16]
and then extended to the 3D case [17]). Let us point out that a scalar Lagrange multiplier has to be introduced on the
artificial boundaries, because these transparent conditions are not naturally compatible with the variational formulation
in the perturbed area. The method is very accurate but requires a specific implementation and leads to a partially dense
linear system. Such system can be difficult to invert, in particular for elastic 3D configurations. Moreover, this approach
cannot be used in the general anisotropic case.

In ourwork, we intend to gather advantages of both classes ofmethods. In otherwords, wewould like to design amethod
using transparent boundary conditions based onmodal expansions and such that only simple and sparse systems have to be
inverted. A natural idea is to use iterative algorithms instead of direct ones to solve a system involving transparent boundary
conditions. This framework has been already applied to several problems set in unbounded domains [18–20]. One of the
main features is that the system to invert (or equivalently the preconditioner) is chosen as a sparse part of the complete
system. As a consequence, the dense part of the matrix coming from the non-local transparent condition is involved only in
the matrix–vector product step. It is also instructive to relate these iterative algorithms to domain decomposition methods.
The specificity here is that only two subdomains are introduced, a bounded one and an unbounded one where the equation
can be explicitly solved, using an analytical representation (a modal expansion or an integral representation for instance).
Different algorithms are derived bymodifying the transmission conditions between the two subdomains, which can overlap
or not. It is now well known that algorithms of this type do not converge in general for time harmonic wave equations [20]
but they can be used to design preconditioned Krylovmethods like GMRES [21]. Themain criterion to discriminate between
different algorithms is the rate of convergence of the associated GMRES algorithms.

In the present paper, we want to adapt these ideas to the case of elastic waveguides, which has not been considered
in the literature. Combining such point of view with the ideas of [12], we derive new families of modal transparent
boundary conditions. The benefit of adding an overlap is emphasized. Besides classical effects (for instance improvement
of the convergence rate of associated iterative algorithms), it allows the construction of a particularly efficient transparent
boundary condition described in Section 4. Last but not least, this condition can be used for anisotropic waveguides. This is
the main contribution of the paper.

The paper is organized as follows. In Section 2, the main notions concerning elastic modes in the isotropic case are
summarized. Then, we introduce a well-posed boundary value problem in a semi-infinite straight waveguide, with a modal
expansion of its solution. Finally, the scattering problemwe are interested in is defined. In Section 3, domain decomposition
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