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h i g h l i g h t s

• We derive the mappings under which the acoustic wave equations are form invariant.
• We thoroughly compare Standard (STA) and Analogue (ATA) Transformation Acoustics.
• We show that the pressure wave equation is not suited for an ATA approach.
• We design an acoustic frequency converter via ATA that cannot be obtained with STA.
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a b s t r a c t

A recently proposed analogue transformation method has allowed the extension of trans-
formation acoustics to general space–time transformations. We analyze here in detail the
differences between this new analogue transformation acoustics (ATA) method and the
standard one (STA). We show explicitly that STA is not suitable for transformations that
mix space and time. ATA takes as starting point the acoustic equation for the velocity po-
tential, instead of that for the pressure as in STA. This velocity-potential equation by itself
already allows for some transformations mixing space and time, but not all of them. We
explicitly obtain the entire set of transformations that leave its form invariant. It is for the
rest of transformations that ATA shows its true potential, allowing for building a transfor-
mation acoustics method that enables the full range of space–time transformations. We
provide an example of an important transformation which cannot be achieved with STA.
Using this transformation, we design and simulate an acoustic frequency converter via the
ATA approach. Furthermore, in those cases in which one can apply both the STA and ATA
approaches, we study the different transformational properties of the corresponding phys-
ical quantities.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The success of transformation optics [1–4], together with the availability of artificial materials with tailor-made proper-
ties [5,6], has led researchers to explore the possibility of applying similar techniques in other branches of physics. Outside of
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optics, acoustics is probably the field in which the greatest advance has been achieved. The form-invariance of the acoustic
equations under spatial transformations is used to obtain the material parameters that deform acoustic space in the desired
way. One of the most important applications of this technique is the cloaking of acoustic waves [7–12].

One possible problem in this process is that the transformations from virtual to physical space may result in
metamaterials that cannot be realized in practice. In order to overcome this problem, several authors [13,14] have proposed
to invert the process by first studying the range of realizable material parameters, and then deriving the appropriate
transformations which guarantee the desirable effect, such as acoustic cloaking. Another problem, and the one that we
will mainly address here, is related to the transformation process itself. Unlike electromagnetic theory, classical acoustics is
based on non-relativistic equations that are non-invariant under transformations thatmix space and time. As a consequence,
the standard method for transformation acoustics cannot be applied to design devices based on this kind of transformation,
contrarily to what has been done in optics [15–17].

Recently, the construction of a general transformation acoustics formalismwas tackled in a differentway [18,19]. Instead
of transforming directly the acoustic equations, the symmetries of an analogue abstract space–time (described by relativistic
equations) were exploited. In this method, each couple of solutions connected by a general coordinate transformation
in the analogue space–time can be mapped to acoustic space. In this way, it is possible to find the relation between the
acoustic material parameters associated with each of these transformation-connected solutions. This method is referred to
as analogue transformation acoustics (ATA) and revolves around the acoustic velocity potential wave equation and its formal
equivalence with the relativistic equation that describes the evolution of a scalar field in a curved space–time [20,21].

Since ATA and STA start from different initial equations (STA relies on pressure equations, whereas ATA starts from the
velocity potential), it is worth studying the differences between the two methods. The first question that arises is whether
it could be possible to construct an analogue transformation method based on the pressure wave equation, rather than
the velocity potential formulation, and what its range of application would be. Second, it would be desirable to know if
the pressure transforms in the same way in STA and ATA in those cases in which both methods can be used. Finally, we
would like to explicitly obtain the set of transformations under which the acoustic equations are directly form-invariant
in the original acoustic laboratory space–time. In all the transformations that fall outside this set, the construction of the
auxiliary relativistic analogue space–time, and hence the use of ATA, is essential to achieve the desired transformation. All
these questions are addressed in this work. In addition, to illustrate the potential of ATA, we analyze an example of a non-
form-preserving transformation, namely, a space-dependent linear time dilation, which cannot be considered within STA.
Using this transformation, we design and numerically test an acoustic frequency converter.

The paper is organized as follows. In Section 2 we outline the main limitation of the approach based on transforming
directly the acoustic equations and present the set of transformations that do not preserve the form of the velocity potential
equation (the detailed derivation can be found in the Appendix). In Section 3 we first review the ATA method. Then,
we explicitly demonstrate that, although an analogue approach based on the pressure wave equation can in principle be
constructed, it is not suitable for transformations that mix space and time. In Section 4, we design and analyze the above-
mentioned acoustic frequency converter. The differences between STA and ATA are studied in depth in Section 5. Finally,
conclusions are drawn in Section 6.

2. General space–time transformations

The various existing analyses in STA start from the following basic equation for the pressure perturbations p of a (possibly
anisotropic) fluid medium [22]:

p̈ = B∇i

ρ ij

∇jp

. (1)

Here, B is the bulk modulus and ρ ij the (in general, anisotropic) inverse matrix density of the background fluid. We will use
latin spatial indices (i, j) and Greek space–time indices (µ, ν, with x0 = t). This is a Newtonian physics equation so that ∇

represents the covariant derivative of the Newtonian flat 3-dimensional space. In generic spatial coordinates it will read

p̈ = B
1

√
γ

∂i
√

γ ρ ij∂jp

, (2)

where γ is the determinant of the three-dimensional spatial metric γij (with γ ij its inverse). The success of STA relies on the
form invariance of this equation under spatial coordinate transformations. It is easy to prove, however, that Eq. (2) is not
form invariant for more general (space–time mixing) transformations.

Another commonly used equation in acoustics is the one describing the evolution of the potential function φ1 for the
velocity perturbation v1 defined as v1 = −∇φ1 [20,21]1:

− ∂t

ρc−2 (∂tφ1 + v · ∇φ1)


+ ∇ ·


ρ∇φ1 − ρc−2 (∂tφ1 + v · ∇φ1) v


= 0, (3)

1 Note that this definition does not impose any restriction on the vorticity of the background flow. In fact, even when the fluid is rotational, the present
formalism can be maintained for sound waves satisfying ω ≫ ω0 , with ω0 the rotation frequency of the background fluid and ω that of the acoustic
perturbation. See the discussion in [23].
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