Explicit expression of polarization vector for surface waves, slip waves, Stoneley waves and interfacial slip waves in anisotropic elastic materials

T.C.T. Ting ${ }^{1}$
Division of Mechanics and Computation, Stanford University, Durand 262, Stanford, CA 94305, United States

HIGHLIGHTS

- Explicit expressions of the polarization vectors are given.
- They are given for Rayleigh waves, slip waves and Stoneley waves.
- Unexpected results are obtained for polarization vector for interfacial slip waves.
- It does not depend explicitly on material in the other half-space.
- The special case of orthotropic materials is studied.

ARTICLE INFO

Article history:

Received 2 November 2013
Received in revised form 3 February 2014
Accepted 18 February 2014
Available online 12 March 2014

Keywords:

Polarization vector
Surface wave
Slip wave
Stoneley waves
Interfacial slip waves
Anisotropic material

Abstract

We present explicit expression of the polarization vector for surface waves and slip waves in an anisotropic elastic half-space, and Stoneley waves and interfacial slip waves in two dissimilar anisotropic elastic half-spaces. An unexpected result is that, in the case of interfacial slip waves, the polarization vector for the material in the half-space $x_{2} \geq 0$ does not depend explicitly on the material property in the half-space $x_{2} \leq 0$. It depends on the material property in the half-space $x_{2} \leq 0$ implicitly through the interfacial slip wave speed v. The same is true for the polarization vector for the material in the half-space $x_{2} \leq 0$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Surface waves and slip waves in an anisotropic elastic half-space have been studied [1-3], so have Stoneley waves and interfacial slip waves [4-7]. However, most investigations focus on the secular equation for the wave speed. In this paper we focus our attention on the polarization vector.

In order for the paper to be self-contained we present in Section 2 some basic equations that are needed for the present paper. The polarization vector for surface waves and slip waves in the half-space are studied in Section 3. In Section 4 we consider interfacial waves along the interface of two dissimilar anisotropic elastic half-spaces that are rigidly bonded together. They are known as Stoneley waves [4]. Explicit expression of the polarization vector is presented. In Section 5, we investigate interfacial waves along the interface of two dissimilar anisotropic elastic half-spaces that are in sliding contact.

[^0]It is found that the polarization vector for the material in the half-space $x_{2} \geq 0$ does not depend explicitly on the material property in the half-space $x_{2} \leq 0$, and the polarization vector for the material in the half-space $x_{2} \leq 0$ does not depend explicitly on the material property in the half-space $x_{2} \geq 0$. The polarization vectors depend on both materials implicitly through the interfacial slip wave speed v. This means that, if we change the material in the half-space $x_{2} \leq 0$ that does not change the interfacial slip wave speed v, the polarization vector for the material in the half-space $x_{2} \geq 0$ does not change. Likewise, if we change the material in the half-space $x_{2} \geq 0$ that does not change the interfacial slip wave speed v, the polarization vector for the material in the half-space $x_{2} \leq 0$ does not change. The polarization vectors are in terms of the components of the surface impedance tensor \mathbf{M}, which depend on the elastic constants and the wave speed. In Section 6 we present explicit expression of \mathbf{M} for orthotropic materials.

2. Basic equations

We consider wave propagation in a homogeneous linear anisotropic elastic medium. In a fixed rectangular coordinate system $x_{i}(i=1,2,3)$, the equation of motion is

$$
\begin{equation*}
\sigma_{i j, j}=\rho \ddot{u}_{i} \tag{2.1}
\end{equation*}
$$

where $\sigma_{i j}$ is the stress, u_{i} is the displacement, ρ is mass density, the dot denotes differentiation with time t and a comma denotes differentiation with x_{i}. The stress-strain relation is

$$
\begin{align*}
& \sigma_{i j}=C_{i j k s} u_{k, s} \tag{2.2}\\
& C_{i j k s}=C_{j i k s}=C_{k s i j}=C_{i j k} \tag{2.3}
\end{align*}
$$

in which $C_{i j k s}$ is the elastic stiffness. The $C_{i j k s}$ is positive definite and possesses the full symmetry shown in (2.3). The third equality in (2.3) is redundant because the first two imply the third (p. 32 in [8]).

For a two-dimensional steady state motion in the x_{1}-direction with a constant wave speed $v>0$, a general solution for the displacement \mathbf{u} in (2.1) and (2.2) is [2,3,8,9]

$$
\begin{equation*}
\mathbf{u}=\mathbf{a} e^{i k z}, \quad z=x_{1}+p x_{2}-v t \tag{2.4}
\end{equation*}
$$

where $k>0$ is the real wave number, and p and a satisfy the equation

$$
\begin{equation*}
\left[\mathbf{Q}-\rho v^{2} \mathbf{I}+p\left(\mathbf{R}+\mathbf{R}^{T}\right)+p^{2} \mathbf{T}\right] \mathbf{a}=\mathbf{0} \tag{2.5}
\end{equation*}
$$

In the above, the superscript T denotes the transpose, \mathbf{I} is the identity matrix and

$$
\begin{equation*}
Q_{i k}=C_{i 1 k 1}, \quad R_{i k}=C_{i 1 k 2}, \quad T_{i k}=C_{i 2 k 2} \tag{2.6}
\end{equation*}
$$

Introducing the vector

$$
\begin{equation*}
\mathbf{b}=\left(\mathbf{R}^{T}+p \mathbf{T}\right) \mathbf{a}=-p^{-1}\left(\mathbf{Q}-\rho v^{2} \mathbf{I}+p \mathbf{R}\right) \mathbf{a} \tag{2.7}
\end{equation*}
$$

in which the second equality follows from (2.5), the stress computed from (2.2) and (2.4) can be written as

$$
\begin{equation*}
\sigma_{i 1}=\rho v^{2} u_{i, 1}-\phi_{i, 2}, \quad \sigma_{i 2}=\phi_{i, 1} \tag{2.8}
\end{equation*}
$$

where the vector

$$
\begin{equation*}
\phi=\mathbf{b} e^{i k z} \tag{2.9}
\end{equation*}
$$

is the stress function.
There are six eigenvalues p from (2.5) and six associated eigenvectors a. For a steady wave propagating in the half-space $x_{2} \geq 0, p$ must be complex with a positive imaginary part so that the displacement \mathbf{u} computed from (2.4) vanishes at $x_{2}=\infty$. Let \hat{v} be the smallest limiting wave speed [3]. For $v<\hat{v}$ the six eigenvalues p are all complex. They consist of three pairs of complex conjugates. Let $p_{n},(n=1,2,3)$ be the eigenvalues with a positive imaginary part and $\mathbf{a}_{n}, \mathbf{b}_{n}$ be the corresponding \mathbf{a} and \mathbf{b} computed from (2.5) and (2.7). The general solution for the displacement \mathbf{u} and the stress function ϕ obtained from a superposition of (2.4) and (2.9) associated with p_{1}, p_{2}, p_{3} is

$$
\begin{align*}
& \mathbf{u}=\mathbf{A}\left\langle e^{i k z_{*}}\right\rangle \mathbf{q}, \quad \phi=\mathbf{B}\left\langle e^{i k z_{*}}\right\rangle \mathbf{q}, \tag{2.10}\\
& \mathbf{A}=\left[\begin{array}{lll}
\mathbf{a}_{1}, & \mathbf{a}_{2}, & \mathbf{a}_{3}
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
\mathbf{b}_{1}, & \mathbf{b}_{2}, & \mathbf{b}_{3}
\end{array}\right], \tag{2.11}\\
& \left\langle e^{i k z_{*}}\right\rangle=\operatorname{diag}\left[e^{i k z_{1}}, \quad e^{i k z_{2}}, \quad e^{i k z_{3}}\right], \tag{2.12}\\
& z_{n}=x_{1}+p_{n} x_{2}-v t, \quad v<\hat{v}, \tag{2.13}
\end{align*}
$$

and \mathbf{q} is an arbitrary constant.
Let \mathbf{U} and \mathbf{t} be, respectively, the displacement and the surface traction at $x_{2}=0$, i.e.,

$$
\begin{equation*}
U_{i}=u_{i}\left(x_{1}, 0, t\right), \quad t_{i}=\sigma_{i 2}\left(x_{1}, 0, t\right) \tag{2.14}
\end{equation*}
$$

https://daneshyari.com/en/article/1900851

Download Persian Version:

https://daneshyari.com/article/1900851

Daneshyari.com

[^0]: E-mail address: tting@uic.edu.
 1 Professor Emeritus of University of Illinois at Chicago.

