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h i g h l i g h t s

• Explicit expressions of the polarization vectors are given.
• They are given for Rayleigh waves, slip waves and Stoneley waves.
• Unexpected results are obtained for polarization vector for interfacial slip waves.
• It does not depend explicitly on material in the other half-space.
• The special case of orthotropic materials is studied.
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a b s t r a c t

We present explicit expression of the polarization vector for surface waves and slip waves
in an anisotropic elastic half-space, and Stoneley waves and interfacial slip waves in
two dissimilar anisotropic elastic half-spaces. An unexpected result is that, in the case of
interfacial slip waves, the polarization vector for the material in the half-space x2 ≥ 0 does
not depend explicitly on the material property in the half-space x2 ≤ 0. It depends on the
material property in the half-space x2 ≤ 0 implicitly through the interfacial slipwave speed
υ . The same is true for the polarization vector for the material in the half-space x2 ≤ 0.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Surface waves and slip waves in an anisotropic elastic half-space have been studied [1–3], so have Stoneley waves and
interfacial slip waves [4–7]. However, most investigations focus on the secular equation for the wave speed. In this paper
we focus our attention on the polarization vector.

In order for the paper to be self-contained we present in Section 2 some basic equations that are needed for the present
paper. The polarization vector for surface waves and slip waves in the half-space are studied in Section 3. In Section 4
we consider interfacial waves along the interface of two dissimilar anisotropic elastic half-spaces that are rigidly bonded
together. They are known as Stoneley waves [4]. Explicit expression of the polarization vector is presented. In Section 5, we
investigate interfacial waves along the interface of two dissimilar anisotropic elastic half-spaces that are in sliding contact.
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It is found that the polarization vector for the material in the half-space x2 ≥ 0 does not depend explicitly on the material
property in the half-space x2 ≤ 0, and the polarization vector for the material in the half-space x2 ≤ 0 does not depend
explicitly on the material property in the half-space x2 ≥ 0. The polarization vectors depend on both materials implicitly
through the interfacial slip wave speed υ . This means that, if we change the material in the half-space x2 ≤ 0 that does not
change the interfacial slip wave speed υ , the polarization vector for the material in the half-space x2 ≥ 0 does not change.
Likewise, if we change the material in the half-space x2 ≥ 0 that does not change the interfacial slip wave speed υ , the
polarization vector for the material in the half-space x2 ≤ 0 does not change. The polarization vectors are in terms of the
components of the surface impedance tensorM, which depend on the elastic constants and the wave speed. In Section 6 we
present explicit expression ofM for orthotropic materials.

2. Basic equations

We consider wave propagation in a homogeneous linear anisotropic elastic medium. In a fixed rectangular coordinate
system xi (i = 1, 2, 3), the equation of motion is

σij,j = ρüi, (2.1)

where σij is the stress, ui is the displacement, ρ is mass density, the dot denotes differentiation with time t and a comma
denotes differentiation with xi. The stress–strain relation is

σij = Cijksuk,s, (2.2)

Cijks = Cjiks = Cksij = Cijsk, (2.3)

in which Cijks is the elastic stiffness. The Cijks is positive definite and possesses the full symmetry shown in (2.3). The third
equality in (2.3) is redundant because the first two imply the third (p. 32 in [8]).

For a two-dimensional steady state motion in the x1-direction with a constant wave speed υ > 0, a general solution for
the displacement u in (2.1) and (2.2) is [2,3,8,9]

u = aeikz, z = x1 + px2 − υt, (2.4)

where k > 0 is the real wave number, and p and a satisfy the equation

[Q − ρυ2I + p(R + RT ) + p2T] a = 0. (2.5)

In the above, the superscript T denotes the transpose, I is the identity matrix and

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2. (2.6)

Introducing the vector

b = (RT
+ pT)a = −p−1(Q − ρυ2I + pR)a, (2.7)

in which the second equality follows from (2.5), the stress computed from (2.2) and (2.4) can be written as

σi1 = ρυ2ui,1 − φi,2, σi2 = φi,1, (2.8)

where the vector

φ = beikz (2.9)

is the stress function.
There are six eigenvalues p from (2.5) and six associated eigenvectors a. For a steady wave propagating in the half-space

x2 ≥ 0, p must be complex with a positive imaginary part so that the displacement u computed from (2.4) vanishes at
x2 = ∞. Let υ̂ be the smallest limiting wave speed [3]. For υ < υ̂ the six eigenvalues p are all complex. They consist of
three pairs of complex conjugates. Let pn, (n = 1, 2, 3) be the eigenvalues with a positive imaginary part and an, bn be the
corresponding a and b computed from (2.5) and (2.7). The general solution for the displacement u and the stress function φ
obtained from a superposition of (2.4) and (2.9) associated with p1, p2, p3 is

u = A

eikz∗


q, φ = B


eikz∗


q, (2.10)

A =

a1, a2, a3


, B =


b1, b2, b3


, (2.11)

eikz∗

= diag


eikz1 , eikz2 , eikz3


, (2.12)

zn = x1 + pnx2 − υt, υ < υ̂, (2.13)

and q is an arbitrary constant.
Let U and t be, respectively, the displacement and the surface traction at x2 = 0, i.e.,

Ui = ui(x1, 0, t), ti = σi2(x1, 0, t). (2.14)
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