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Abstract

We develop a numerical scheme for the wave front computation of complete transmissions and reflections in geomet-
rical optics. Such a problem can be formulated by a reduced Liouville equation with a discontinuous local wave speed or
index of refraction, arising in the high frequency limit of linear waves through inhomogeneous media. The key idea is to
incorporate Snell’s Law of Refraction into the numerical flux for the reduced Liouville equation. This scheme allows a
hyperbolic CFL condition, under which positivity, and stabilities in both l1 and l1 norms, are established. Numerical
experiments are carried out to demonstrate the validity and accuracy of this new scheme.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we construct and study a numerical scheme for the reduced Liouville equation in two space
dimension:

ft þ cðx; yÞ cos hfx þ cðx; yÞ sin hfy þ ½cx sin h� cy cos h� f h ¼ 0; ð1:1Þ
where c (x,y) is the local wave speed, f (t,x,y,h) is the density distribution of particles depending on position
(x,y), time t and the slowness angle h 2 (�p,p]. We are concerned with the case when c (x,y) contains discon-

tinuities, corresponding to different indices of refraction in different media. This discontinuity will generate an
interface, crossing which waves will undergo transmissions or reflections.

The reduced Liouville equation (1.1) is obtained by using the constant Hamiltonian condition in the 2D full
phase space Liouville equation

0165-2125/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.wavemoti.2006.06.001

q Research supported in part by NSF Grant No. DMS-0305080 and NSFC grant for Project 10228101. Wen’s research was also
supported partially by the Knowledge Innovation Project of the Chinese Academy of Sciences Nos. K5501312S1 and K5502212F1.

* Corresponding author. Tel.: +86 1062623711; fax: +86 1062542285.
E-mail addresses: jin@math.wisc.edu (S. Jin), wenxin@amss.ac.cn (X. Wen).

Wave Motion 43 (2006) 667–688

www.elsevier.com/locate/wavemoti

mailto:jin@math.wisc.edu
mailto:wenxin@amss.ac.cn


ft þ
cðx; yÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q fx þ
cðx; yÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q fy � cx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
fn � cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
fg ¼ 0; ð1:2Þ

where (n,g) is the slowness vector. The Liouville equation (1.2) is the phase space description of the Hamil-
tonian system with Hamiltonian

Hðx; y; n; gÞ ¼ cðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
: ð1:3Þ

In classical mechanics the Hamiltonian (1.3) of a particle remains a constant along the particle trajectory, even
when it is being transmitted or reflected by the interface. By using the condition H � C for some constant C,
one arrives at the reduced Liouville equation (1.1) which is computationally more efficient.

The Liouville equation (1.2) arises in the phase space description of geometrical optics. It is the high fre-
quency limit of the linear wave equation

utt � cðxÞ2Du ¼ 0; t > 0; x 2 R2: ð1:4Þ
Recently several phase space based level set methods are based on the equation (1.2) or (1.1), see
[13,16,23,33,36]. It was used to compute the multivalued phase or velocity beyond caustics. The computations
of multivalued solution in geometrical optics, or more generally for nonlinear PDEs, have been an active area
of research in recent years, see [2,3,5,4,8,15,10,11,13,12,18,19,16,24,37,41,6,36,20,22,23]. However, all these
works were developed without the interface. The analytical studies on the geometrical optics limit of linear
wave equations through interfaces or solid boundaries were carried out in [1,32,39].

In our previous works, we constructed the Hamiltonian-preserving schemes that are suitable for the full
phase space Liouville equation (1.2) with complete transmissions and reflections [26] or with partial transmis-
sions and reflections [27]. The design principle there was to build the behavior of a particle at the interface –
cross over with a changed velocity or/and be reflected with a negative velocity according to a constant
Hamiltonian – into the numerical flux. See also earlier works [35,25]. It gives a selection criterion to select
a unique solution, consistent to Snell’s Law of Refraction, to the governing equation, which is linearly hyper-
bolic with singular (discontinuous or measure-valued) coefficients.

When only the wave front is interested one can just use the reduced Liouville equation which reduces the
dimension by one. The key idea for the reduced Liouville equation is still to build into the numerical flux the
wave behavior at the interface. This is given by Snell’s Law of Refraction. This new, explicit scheme gives a
method to select out the physically correct solution for the reduced Liouville equation (1.1) with singular coef-
ficients, and like those in [25,26], it allows a typical hyperbolic stability condition Dt = O (Dx,Dy,Dh), under
which we also establish the positivity, and l1 and l1 stability for the scheme.

The level set approach developed in [33,7,36], by using the reduced Liouville equation, has several advan-
tages such as automatically handling the multivalued wave fronts and controlling the solution resolution.
When the wave speed is smooth, the use of a standard finite difference method (SFDM) for the reduced
Liouville equation, which is linearly hyperbolic, should be satisfactory. For problems with discontinuous wave
speeds, one can still formally use the SFDM by either ignoring or smoothing out the wave speed discontinu-
ities. However, as will be shown by numerical examples in Section 4, the use of the SFDM by ignoring the
wave speed discontinuities typically does not lead to physically correct numerical solution that is consistent
to Snell’s Law. On the other hand, the use of the SFDM by smoothing out the wave speed discontinuities
may give convergent solutions, but typically suffers from a severe CFL condition as well as poorer numerical
resolution [33,26]. In [7] the authors take into account the wave reflection into the numerical scheme without
considering wave transmission. See also a higher order method able to compute multiple reflections [9]. Such a
consideration is suitable for waves hitting a solid wall. However, through an interface, waves can be reflected
or transmitted, requiring the numerical scheme to be able to handle both situations. The scheme developed in
this paper has such a capability.

We present and validate the scheme in the case of single interface. It can be applied to the case of multiple,
isolated interfaces naturally. Moreover, Our idea is not restricted to two space dimension. It can be extended
to three space dimension as well. However, as pointed out in [27], its generalization to the case of partial trans-
missions and reflections at the interface is not straightforward, and will be considered in our future study.
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