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h i g h l i g h t s

• Low concentrations of porous cylinders at low frequencies are considered.
• Wavenumbers from explicit and implicit formulas are compared.
• Effective mass densities and bulk moduli are given.

a r t i c l e i n f o

Article history:
Received 31 December 2015
Received in revised form 27 May 2016
Accepted 7 June 2016
Available online 16 June 2016

Keywords:
Randommedium
Effective wavenumber
Self-consistent schemes
Rayleigh limit

a b s t r a c t

The effective wavenumber of the coherent wave propagating in a fluid containing parallel
porous cylinders randomly distributed in space is derived at the Rayleigh limit for
(i) explicit formulas: Independent Scattering Approximation (ISA), Waterman and Truell
(WT) and Linton and Martin (LM) and (ii) for implicit formulas: Coherent Potential
Approximation (CPA) and Generalized Self Consistent Method (GSCM) applied to WT and
to LM. The effective mass density and bulk modulus are also derived. The validity of all the
effective quantities is checked by recovering, when the porosity of the scatterers tends to
zero, the case of an inhomogeneous medium of elastic cylinders.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of sound propagation through homogeneous compressible fluid or elastic domains containing randomly
distributed scatterers has received a large attention in recent decades [1–5]. In the case of fluid domains, the scatterers can
be aswell bubbles, hard grains, elastic rods or contrast agents. Themain interest lies on the description of the coherent wave
which represents a statistical average over all possible configurations of the scatterers. The effective wavenumber keff of the
coherent wave which is also called the effective wavenumber is complex-valued.

Several explicit formulas (i.e., which do not need to be solved) have been proposed for the calculation of keff in the case
of cylindrical scatterers, among which the Independent Scattering Approximation (ISA) formula [6] derived by using Foldy’s
closure assumption [4]

k2eff = k2ISA = k20 − 4in0f (0) , (1)
the Waterman and Truell [7] formula,
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Table 1
Physical constants of the porous medium and of saturating water. The function F (χ) is dynamic viscosity factor [16] and ω

angular frequency.

Bulk modulus of grains Ks
Dried frame bulk modulus Kb
Dried frame shear modulus µ

Density of grain ρs

Water sound velocity c0
Density of water ρ0
Saturating water kinematic viscosity η

Porosity β

Porous frame permeability [15] k (depends on β)
Mean pore radius [15] ap (depends on β)
Tortuosity (structure factor) [16] α (depends on β)
Dynamic tortuosity α̃ = α + iβηF (χ) / (ωkρ0) , χ =


ωa2p/η

1/2
(F (χ) ≈ 1 at low frequency)

Bulk modulii of frame H =
(Ks−Kb)2

Ks(1+β(Ks/Kf −1))−Kb
+ Kb +

4
3µ

C =
Ks(Ks−Kb)

Ks(1+β(Ks/Kf −1))−Kb

and the Linton and Martin [8,9] formula which is based on the closure assumption often called the quasicrystalline
approximation (QCA) of Lax,

k2eff = k2LM = k20 − 4in0f (0) +
8n2
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[f (θ)]2 dθ. (3)

In the foregoing, f (θ) is the far-field scattered amplitude of each cylinder in the direction θ , n0 the number of scatterers per
unit area and k0 the wavenumber in the homogeneous compressible fluid host. The accuracy of the three formulas depends
on the value of the concentration c = n0πa2 where a is the radius of circular cylinders, i.e., on the ratio n0/k20. Eqs. (1)–(3)
were obtainedunder the assumptionn0/k20 ≪ 1. ISA contains termsof order zero andone inn0/k20; bothWTand LM formulas
contain the same orders plus a term of order two in n0/k20 and are thereforemore accurate. But as shown byDerode et al. [10]
both ISA and WT fail at high concentrations approaching 15% while LM still provides good results.

Implicitmethods have been also usedwhich include the Coherent Potential Approximation (CPA) [1,2,11] and theGeneral
Self ConsistentMethod (GSCM) of Yang andMal [12]which originates froma self consistent scheme applied to theWaterman
and Truell’s formula. The basic idea of implicit methods consists in the replacement of the random medium by an effective
medium with a complex wavenumber keff calculated self-consistently by imposing that the scattering arising from the
local substitution of the effective medium by the actual medium (cylinder coated with a fluid shell) should vanish. In such
methods, the wavenumber keff is obtained by solving an equation containing the far-field scattered amplitude.

In the present paper, the scatterers are made of a fluid saturated porous material that obeys Biot’s theory [13,14]. A
fast, a slow and a shear waves are assumed to propagate being all dispersive and attenuated. The scatterers are embedded
in the same fluid as the saturating one. In Section 2, for long wavelengths, formulas for the effective wavenumbers of
randomly distributed porous cylinders are derived up to the second order in concentration from which velocity ω/Re


keff


and attenuation Im

keff

/Re


keff

can be studied. At first, the Rayleigh limits for the explicit effective wavenumbers kISA,

kWT and kLM , Eqs. (1)–(3), are obtained. One checks the results by comparing themwith the limiting case of elastic scatterers
(absence of porosity). In Section 3, onemakes the equivalent derivations for the implicit effectivewavenumbers, namely kCPA,
kG−WT and kG−LM . It is shown that the implicit methods differ from the explicit ones from the second order in concentration
for a randommediumof porous scatterers aswell as for a randommediumof elastic ones. In Section 4, the expressions found
for the explicit and implicit effective wavenumbers are used to derive effective dynamic mass densities and bulk moduli. A
comparative study between the different methods is provided.

2. Wavenumbers from explicit theories

Let us consider circular porous cylinders of radius a immersed in and saturated by a fluid of mass density ρ0 and of sound
velocity c0. Whereas the fluid is assumed perfect out of the cylinders, it is viscous inside the pores, with a kinematic viscosity
η. The incident longitudinal wave from the fluid has awavenumber denoted by k0 = ω/c0 whereω is the angular frequency;
when hitting the scatterers, some penetrates and is converted into three poroelastic waves [13,14] with respective complex
wavenumbers ℓ1 = ω/c1 (fast longitudinal wave), ℓ2 = ω/c2 (slow longitudinal wave) and ℓt = ω/ct (shear or transverse
wave), before being reemitted into the fluid. The quantities c1, c2 and ct denote complex velocities. The three wavenumbers
ℓ1, ℓ2 and ℓt depend on a great number of parameters summarized in Table 1.

This paper deals with the low frequency range. The magnitudes of k0 and
ℓj
 (j = 1, 2, t) being of the same order, the

low frequency assumption is to consider normalized frequencies such that k0a ≪ 1 and
ℓja

 ≪ 1. The far-field scattering
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