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• Numerical modeling of nonlinear hyperbolic systems with nonlinear relaxation.
• Experimental investigation of nonlinear propagation.
• Validation of a theoretical model involving acoustic solitary waves.
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a b s t r a c t

This paper addresses the propagation of high amplitude acoustic pulses through a 1D lat-
tice of Helmholtz resonators connected to a waveguide. Based on the model proposed by
Sugimoto (1992), a new numerical method is developed to take into account both the non-
linear wave propagation and the different mechanisms of dissipation: the volume attenu-
ation, the linear viscothermal losses at the walls, and the nonlinear absorption due to the
acoustic jet formation in the resonator necks. Good agreement between numerical and ex-
perimental results is obtained, highlighting the crucial role of the nonlinear losses. Different
kinds of solitary waves are observed experimentally with characteristics depending on the
dispersion properties of the lattice.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of nonlinearwaves in lattices has been the object of a great interest in the scientific community. This theme
has stimulated researches in a wide range of areas, including the theory of solitons and the dynamics of discrete networks.
Works have been led in electromagnetism and optics [1], and numerous physical phenomena have been highlighted, such
as dynamical multistability [2–4], chaotic phenomena [5,6], discrete breathers [7–9] and solitons or solitary waves [10,11];
for a review, see [12]. Solitary waves have been observed and studied first for surface wave in shallow water [13]. These
waves can propagate without change of shape and with a velocity depending of their amplitude [14]. This phenomenon has
been studied in many physical systems, for instance in fluid dynamics, optics, plasma physics. For a review, see [15] and the
citations in [16].

In the field of acoustics, numerous works have shown the existence of solitary waves in uniform or inhomogeneous
rods [17–19], periodic chains of elastics beads [20–24], periodic structures such as lattices or crystals [25–27], elastic
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Fig. 1. Sketch of the guide connected with Helmholtz resonators.

layers [28–30], layered structures coated by film of soft material [31] and microstructured solids [32]. As we can see, most
studies concern elastic waves in solids. Indeed, only a few works deal with acoustic waves in fluid, even if experimental
observations of solitary waves have been made in the atmosphere [33–35] or in the ocean [36–38].

One reason of this lack originates from the fact that the intrinsic dispersion of acoustic equations is too low to compete
with the nonlinear effects, preventing from the occurrence of solitons. To observe the latter waves, geometrical dispersion
must be introduced. It has been the object of the works of Sugimoto and his co-authors [39–42], where the propagation of
nonlinear waves was considered in a tube connected to an array of Helmholtz resonators. A model incorporating both the
nonlinear wave propagation in the tube and the nonlinear oscillations in the resonators has been proposed. Theoretical and
experimental investigations have shown the existence of acoustic solitary waves [39].

The present study extends the work of Sugimoto. We examine the validity of his theoretical model to describe the
propagation of nonlinear acoustic waves in a tunnel with Helmholtz resonators. For this purpose, we develop both a new
numerical method and real experiments. Compared with our original methodology presented in [43], improvements are
introduced to model numerically the attenuation mechanisms. The combination of highly-accurate numerical simulations
and experimental results enables to study quantitatively the generation of solitary waves, and also to determine the role of
the different physical phenomena (such as the linear and nonlinear losses) on wave properties.

The paper is organized as follows. Section 2 introduces the model of Sugimoto [42]. Section 3 presents the evolution
equations. The nonlocal fractional derivatives modeling the viscothermal losses are transformed into a set of memory
variables satisfying local-in-time ordinary differential equations. Sugimoto’s model is then transformed into a first-order
system of partial differential equations. Section 4 details the numerical methods. The coefficients of the memory variables
are issued from a new optimization procedure, which ensures the decrease of energy. A splitting strategy is then followed to
integrate the evolution equations. Compared with [43], another novelty concerns the integration of a nonlinear differential
equation describing the nonlinear losses. Section 5 introduces the experimental setup, the acquisition chain, and some
validation tests. Section 6 compares the experimental results and the simulated results, confirming the validity of the
theoretical model [40] and the existence of acoustic solitary waves.

2. Problem statement

2.1. Configuration

The configuration under study ismadeupof an air-filled tube connectedwith uniformly distributed cylindrical Helmholtz
resonators (Fig. 1). The geometrical parameters are the radius of the guide R; the axial spacing between resonators D; the
radius of the neck r; the length of the neck L; the radius of the cavity rh; and the height of the cavity H . The cross-sectional
area of the guide is A = π R2 and that of the neck is B = π r2, the volume of each resonator is V = π r2h H . Corrected lengths
are introduced: L′

= L + 2 r accounts for the viscous end corrections, and the corrected length Le = L + η accounts for the
end corrections at both ends of the neck, where η ≈ 0.82 r is determined experimentally [40]. The reduced radius is:
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The physical parameters are the ratio of specific heats at constant pressure and volume γ ; the pressure at equilibrium p0;
the density at equilibrium ρ0; the Prandtl number Pr; the kinematic viscosity ν; and the ratio of shear and bulk viscosities
µv/µ. The linear sound speed a0, the sound diffusivity νd, the dissipation in the boundary layer C , and the characteristic
angular frequencies of the resonator ω0 and ωe, are given by:
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