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h i g h l i g h t s

• Physical model relating ultrasonic experimental observations in complex nonlinear media.
• Sound mathematical properties, combining nonlinear hyperbolic systems and relaxation terms.
• Robust numerical methods.
• Qualitative agreement with experiments.
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a b s t r a c t

The dynamics of heterogeneous materials, like rocks and concrete, is complex. It includes
such features as nonlinear elasticity, hysteresis, and long-time relaxation. This dynamics is
very sensitive to microstructural changes and damage. The goal of this paper is to propose
a physical model describing the longitudinal vibrations in heterogeneous material, and to
develop a numerical strategy to solve the evolution equations. The theory relies on the cou-
pling of two processes with radically different time scales: a fast process at the frequency
of the excitation, governed by nonlinear elasticity and viscoelasticity, and a slow process,
governed by the evolution of defects. The evolution equations are written as a nonlinear
hyperbolic system with relaxation. A time-domain numerical scheme is developed, based
on a splitting strategy. The features observed by numerical simulations show qualitative
agreementwith the features observed experimentally byDynamic Acousto-Elastic Testing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Understanding themechanismsof acoustic nonlinearity in heterogeneousmaterials is an object of intensive studies [1–4].
Experimental evidence has shown that media such as rocks and concrete possess an anomalously strong acoustic nonlin-
earity, which is of great importance for the description of ultrasonic phenomena including damage diagnostics. Besides the
widely-studied nonlinear and hysteretic stress–strain relation [5], a long-time relaxation is also reported by most of the au-
thors [6,7]. This slow dynamics is typically observed in experiments of softening/hardening [8,9], where a bar is forced by a
monochromatic excitation on a time interval, before the source is switched-off. During the experiment, the elastic modulus
is measured by Dynamic Acousto-Elastic Testing methods. It can be observed that the elastic modulus decreases gradually
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(softening), and then it recovers progressively its initial value after the extinction of the source (hardening). The time scales
of each stage is much longer than the time scale of the forcing, which justifies the term ‘‘slow dynamics’’.

Themodeling of this slowdynamic effect has been investigated bymany authors. An essentially phenomenologicalmodel
is widely used for this purpose: the Preisach–Mayergoyz model (P–Mmodel) based on the integral action of hysteretic ele-
ments connecting stress and strain [10,11,4]. This model initially arose from the theory of magnetism, where the ‘‘hysteron’’
has a clear physical significance. In elasticity, such a physical interpretation is not available. To overcome this limitation
and to develop a rigorous theory, various authors have proposed alternative models based on clear mechanical concepts.
To our knowledge, the first physical model of slow dynamics was described in [7], where the relaxation was related to the
recovery of microscopic contact impeded by a smooth spectrum of energy barriers. This theory was extended in [12,13], and
recently improved based on the analysis of inter-grain contacts and the resulting surface force potential with a barrier [4].
Another approach was followed in [14], where the author shows that two rough surfaces interacting via adhesion forces
yield dynamics similar to that of the fictitious elements of the Preisach–Mayergoyz space [14].

Here, we present an alternative mechanical description of slow dynamics based on the works of Vakhnenko and
coauthors [15,16], where the following scenario is proposed:

• Young’smodulus E varieswith time. One canwrite E(g), where g is a time-dependent concentration of defects. It is closely
related to thenotion of damage in solidsmechanics. But contrary towhat happens in this irreversible case,where g strictly
increases with time, the evolution of g is reversible. Waiting a sufficiently long time, the initial material properties are
recovered;
• at equilibrium, stress σ yields a concentration of defects gσ . The dependence of gσ with respect to σ is monotonic;
• out of equilibrium, relaxation times are required for g to reach gσ . Whether g < gσ (increase in the number of defects)

or g > gσ (decrease in the number of defects), Vakhnenko et al. state that the time scales differ. The argument is given
in Section III of [16]: ‘‘there are various ways for an already existing crack in equilibrium to be further expanded when
surplus tensile load is applied. However, under compressive load a crack, once formed, has only one spatial way to be
annihilated or contracted’’. In both cases, these relaxation times are much longer than the time scale of the excitation,
which explains the slow dynamics.

Comparisons with experimental data are given in Section V of [16], where the authors reproduced experiments done
on Berea sandstone [6]. One current weakness is that no micro-mechanical description of the involved defects has been
proposed so far. A possible analogy may be found with populations of open/closed cracks filled with air, equivalent to a
population of bubbles that relax towards an equilibrium state, depending on the applied stress [17,18]. In counterpart, one
attractive feature of Vakhnenko’s model is that it combines hyperbolic equations and relaxation terms, which constitutes a
sound basis of physical phenomena [19].

The present paper is a contribution to the theoretical analysis of this model and to its practical implementation to de-
scribe wave motion in damaged media. First, we point out that no mechanisms prevents the concentration of defects from
exceeding 1, which is physically unrealistic. We fix this problem by proposing another expression for the equilibrium con-
centration. Second, the Stokes model describing viscoelasticity behavior in [16] poorly describes the attenuation in real
media, and it is badly suited to time-domain simulations of wave propagation. Instead, we propose a new nonlinear version
of the Zener model. This viscoelastic model degenerates correctly towards a pure nonlinear elasticity model when atten-
uation effects vanish. Moreover, the usual Zener model in the linear regime is recovered [20]. In practice, this model only
requires one physical parameter under the assumption of constant quality factor. Third, hyperbolicity is analyzed. Depend-
ing on the chosen model of nonlinear elasticity, a real sound speed may be obtained only on a finite interval of strains; this
is true in particular with the widely-used Landau’s model.

The main effort of Vakhnenko et al. was devoted to the construction of a model of slow dynamics. The resolution of
the involved equations was quite rudimentary and not satisfying. Indeed, the equilibrium concentration of defects gσ was
assumed to be known and was imposed (Eq. (17) in [16]), while it depends on σ . But treating the full coupled nonlinear
equations is out of reach of a semi-analytical approach, which explains the strategy of these authors. On the contrary, we
propose here a numerical method to integrate the full system of equations, involving the nonlinear elasticity, the hysteretic
terms of viscoelasticity, and the slow dynamics. Due to the existence of different time scales, a splitting strategy is followed,
ensuring the optimal time step for integration. The full system is split into a propagative hyperbolic part (resolved by a
standard scheme for conservation laws) and into a relaxed part (resolved exactly).

Our numerical model is very modular. The various bricks (nonlinear elasticity, viscoelasticity, slow dynamics) can be in-
corporated easily. Numerical tests validate each part separately. When all the whole bricks are put together, typical features
of wave motion in damaged media are observed. The softening/hardening experiments are qualitatively reproduced.

2. Physical modeling

In this section,wewrite the basic components describing thewavemotion in a 1Dmaterialwith damage. The foundations
rely on linear elastodynamics, whose equations are recalled in Section 2.1. Then, the soft-ratchet model of Vakhnenko and
coauthors is introduced and enhanced in Section 2.2. The fast dynamics is described in Section 2.3, where various known
models of nonlinear elasticity are presented, and a nonlinear model of viscoelasticity is proposed. This latter degenerates
correctly in the limit cases of linear elasticity or null attenuation.
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