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a b s t r a c t

Propagation of nonlinear strain waves through a layered composite material is considered.
The governing macroscopic wave equation for the long-wave case was obtained earlier
by the higher-order asymptotic homogenization method (Andrianov et al., 2013). Non-
stationary dynamic processes are investigated by a pseudo-spectral numerical procedure.
The time integration is performed by the Runge–Kutta method; the approximation with
respect to the spatial co-ordinate is provided by the Fourier series expansion. The
convergence of the Fourier series is substantially improved and the Gibbs–Wilbraham
phenomenon is reduced with the help of Padé approximants. As result, we explore how
fast and under what conditions the solitary strain waves can be generated from an initial
excitation. The numerical and analytical solutions (when the latter can be obtained) are in
good agreement.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Propagation of nonlinear elastic waves in composite materials is accompanied by a number of new phenomena that
can never be observed in linear and homogeneous media. Among them, we can point out the dependence of the wave
shape, velocity and attenuation upon the amplitude and the formation of solitary bell-shaped strain waves. From the
physical standpoint, these specific dynamic properties are caused by the interplay between the effects of nonlinearity and
dispersion [1,2].

Nonlinear behaviour of heterogeneous solids can be caused by geometrical, physical and structural factors. Geometrical
nonlinearity is described by the Cauchy–Green strain tensor [3]. Physical nonlinearity displays a deviation of the
stress–strain relations from the proportional Hooke’s law. It can be modelled representing the energy of deformation as a
series expansion in powers of invariants of the strain tensor and taking into account the higher-order terms. Such expansion
is usually referred to as the Murnaghan elastic potential [4]. However, we should note that the idea of this approach was
proposed before by Landau [5]. Originally, the five-constant model of elasticity has appeared much earlier in the work by
Voigt [6]. Structural nonlinearity becomes significant if the solid contains highly compressible local defects, such as cracks,
voids, dislocations, which is typical for rocks and soils [7–9]. For composite materials, the effect of structural nonlinearity
may be also induced by imperfect bonding conditions at the interface between the constitutive components [10]. Nonlinear
properties of pre-stressed heterogeneous solids were considered by Abrahams and Parnell [11,12], who studied how the
initial finite deformation affects themicrostructure and, subsequently, the dynamic response of thematerial. In the problems
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of wave propagation, nonlinearity leads to the continuous concentration of energy that makes the wave front steeper and
steeper.

Dispersion can be qualified as geometrical and structural. Geometrical dispersion does not depend on the presence of
microstructure and takes place in homogeneous materials as well. It may appear in beams and plates due to the presence
of bending stresses; in rods due to reflections of the wave from lateral surfaces, etc. Meanwhile, structural dispersion is
determined essentially by the heterogeneity of composite solids. Successive reflections and refractions of the signal at the
interfaces between the components result in the scattering of thewave field. In contrast to nonlinearity, dispersion provides
delocalization of energy.

When nonlinearity and dispersion act together, they balance each other’s influence. Then, stationary nonlinear waves of
a permanent shape can propagate. The increase in nonlinearity leads to the formation of localized solitary waves that travel
for long distances keeping the shape and velocity stable.

Study of nonlinear elastic waves has been attracting considerable attention from many authors. Here we are not able to
summarize even a small fraction of previous results and, for a detailed review of the subject, refer to the monographs by
Erofeyev [13], Porubov [14], and Samsonov [15].

In recent years, propagation of nonlinear waves in heterogeneous materials has been intensively investigated. Different
types of higher-order continuum models were used in [13,14,16–21]. The effect of structural dispersion was predicted
allowing the elastic medium additional internal degrees of freedom. The corresponding theory can be traced back to
the papers by Mindlin [22] and Sun et al. [23]; a connection to Cosserat continua was established by Herrmann and
Achenbach [24]. A recent review of the subject was given by Berezovsky et al. [25]. A general theory of heterogeneous
media in terms of internal variables is presented in [26].

It should be noted that many approaches described above include a number of phenomenological parameters, which are
not known a priori and, for real materials, are expected to be determined experimentally.

A different possibility to take into account the influence of themicrostructure is provided by the higher-order asymptotic
homogenization method (AHM). According to this approach, physical fields in a spatially periodic composite material are
represented by two-scale asymptotic expansions in powers of the small parameter ε = l/λ, where l is the size of the unit
cell and λ is the minimal wavelength. This leads to a decomposition of the final solution into global and local components;
the latter can be evaluated successively from a recurrent sequence of cell boundary value problems. Further, application
of the volume-integral homogenizing operator allows us to obtain a homogenized constitutive equation that describes the
macroscopic behaviour of the composite material. The coefficients of the homogenized equation (so called effectivemoduli)
are evaluated based on the information about the properties of the components and the geometry of the microstructure.
From the very beginning, the AHM was intended for the determination of quasi-static properties of heterogeneous media
and structures [27,28]. Later, taking into account the higher-order terms with respect to ε gave a possibility to predict the
effect of structural dispersion and to obtain macroscopic dynamical equations valid for the long-wave case (l < λ) [29–31].

Modelling elastic waves in layered composites depends on the direction of propagation. When the waves propagate
along the laminas, the dispersion of geometrical type is dominant. Porubov et al. [32] proposed an asymptotic model that
reduces the initial two-dimensional problem to a single one-dimensional nonlinear governing equation for longitudinal
strain waves. The analytical solution for localized solitary waves was obtained. The influence of the delamination was
considered byKhusnutdinova and Samsonov [33]. Itwas shown that splitting of the laminas leads to the fission of an incident
nonlinear wave into a sequence of solitary waves of different amplitudes and velocities. The experimental confirmation of
this phenomenon was reported by Dreiden et al. [34].

The waves propagating across the lamina undergo the effect of structural dispersion. In this case, the AHM can be
effectively used. Linear waves were studied in [30,31,35]. Recently, Andrianov et al. [36] proposed an extension of the AHM
to layered compositeswith geometrical and physical nonlinearities. The homogenized nonlinearwave equationwas derived
and analytical solutions for stationary strain waves were presented.

Stationary solutions require specific initial conditions (generally, in the self-reproducing form). From the practical point
of view, it is often more important to trace the evolution of an arbitrary initial input. Study of non-stationary dynamic
processes may help to answer how fast and under what conditions nonlinear waves of a permanent shape can be generated.
Analytical solutions of unsteady problems are available only in some partial cases, when the governing nonlinear equations
are integrable [37–39]. Otherwise, numerical procedures should be applied.

There are many works devoted to the numerical simulation of nonlinear dynamic processes in homogeneous systems.
Formation of solitary waves from a periodic input was considered by Bridges [40], Rednikov et al. [41], and Salupere
et al. [42]. Evolution of localized initial pulses was investigated in [14,43,44]. It was shown that depending on the shape of
the initial wave profile (harmonic, Gaussian, rectangular, etc.) and on the sign of the perturbation (compression or tension)
different scenarios can be realized, including formation of a single solitary wave, generation of a sequence of solitary waves,
and dispersion of the initial pulse without formation of any localized solutions. Harmonic inputs were also used to study
interactions of the bell-shaped waves, where no periodic wave structure of a permanent shape arises [42,45].

The present paper aims to extend these results to heterogeneous solids. We shall investigate non-stationary nonlinear
strain waves in a layered composite material. As the governing model, we use the macroscopic wave equation (1) obtained
previously by the higher-order AHM [36]. From the mathematical standpoint, it coincides with the well-known Boussinesq
equation.
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