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h i g h l i g h t s

• The propagation of Rayleigh waves in an elastic half-space coated by a thin elastic layer is considered.
• The half-space and the layer are both isotropic and the contact between them is smooth.
• By using the effective boundary condition method an approximate secular equation of fourth-order has been derived.
• From it, an explicit third-order approximate formula for the Rayleigh wave velocity has been established.
• The approximate secular equation and the formula for the velocity will be useful in practical applications.
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a b s t r a c t

In the present paper, we are interested in the propagation of Rayleighwaves in an isotropic
elastic half-space coated with a thin isotropic elastic layer. The contact between the layer
and the half space is assumed to be smooth. The main purpose of the paper is to establish
an approximate secular equation of the wave. By using the effective boundary condition
method, an approximate, yet highly accurate secular equation of fourth-order in terms of
the dimensionless thickness of the layer is derived. From the secular equation obtained, an
approximate formula of third-order for the velocity of Rayleigh waves is established. The
approximate secular equation and the formula for the velocity obtained in this paper are
potentially useful in many practical applications.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The structures of a thin film attached to solids, modeled as half-spaces coated with a thin layer, are widely applied in
modern technology. Measurement of mechanical properties of thin supported films is therefore very significant [1]. Among
various measurement methods, the surface/guided wave method [2] is used most extensively in which the Rayleigh wave
is a most convenient tool. For the Rayleigh-wave approach, the explicit dispersion relations of Rayleigh waves supported
by thin-film/substrate interactions are employed as theoretical bases for extracting the mechanical properties of the thin
films from experimental data. They are therefore the key factor of the investigations of Rayleigh waves propagating in half-
spaces covered by a thin layer. Taking the assumption of a thin layer, explicit secular equations can be derived by replacing
approximately the entire effect of the thin layer on thehalf-space by the so-called effective boundary conditionswhich relate the
displacements with the stresses of the half-space at its surface. For obtaining the effective boundary conditions Achenbach [3]
and Tiersten [4] replaced the thin layer by a plate modeled by different theories: Mindlin’s plate theory and the plate theory
of low-frequency extension and flexure (classical plate theory), while Bovik [5] expanded the stresses at the top surface of
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the layer into Taylor series in its thickness. The Taylor expansion approachwas then employed byNiklasson [6], Rokhlin [7,8],
Benveniste [9], Steigmann and Ogden [10], Steigmann [11], Ting [12], Vinh and Linh [13,14], Kaplunov and Prikazchikov [15]
to establish the effective boundary conditions.

Achenbach [3], Tiersten [4], Bovik [5], Tuan [16] assumed that the layer and the substrate are both isotropic and derived
approximate secular equations of second-order (these equations do not coincide totally with each other). In [10] Steigmann
and Ogden considered a transversely isotropic layer with residual stress overlying an isotropic half-space and the authors
obtained an approximate second-order dispersion relation. In [17] Wang et al. considered an isotropic half-space covered
by a thin electrode layer and the authors obtained an approximate secular equation of first-order. In [13] the layer and the
half-space were both assumed to be orthotropic and an approximate secular equation of third-order was obtained. In [14]
the layer and the half-spacewere both subjected to homogeneous pre-strains and an approximate secular equation of third-
order was established which is valid for any pre-strain and for a general strain energy function.

In all investigations mentioned above, the contact between the layer and the half-space is assumed to be welded. For
the case of smooth contact, there exists only one approximate secular equation of third-order in the literature established
by Achenbach and Keshava [3]. This approximate secular equation includes the shear coefficient, originating fromMindlin’s
plate theory [18], whose usage should be avoided as noted by Muller and Touratier [19], Touratier [20]. This remark was
also mentioned in [21].

It should be noted that for the case of smooth contact, one could not arrive at the effective boundary conditions from the
relations between the displacements and the stresses at the bottom surface of the layer which were derived by Tiersten [4]
and Bovik [5]. In contrast, for the case of welded contact, the effective boundary conditions were immediately obtained.

The main purpose of the paper is to establish an approximate secular equation of Rayleigh waves propagating in
an isotropic elastic half-space coated with a thin isotropic elastic layer for the case of smooth contact. By using the
effective boundary condition method, an approximate effective boundary condition of fourth-order which relates the
normal displacement with the normal stress at the surface of the half space is derived. Using this condition along with
the vanishing of the shear stress at the surface of the half-space, an approximate secular equation of fourth-order in terms
of the dimensionless thickness of the layer is derived.Wewill show that the approximate secular equation obtained is a very
good approximation. Based on it, an approximate formula of third-order for the velocity of Rayleigh waves is established.

2. Effective boundary condition of fourth-order

Consider an elastic half-space x3 ≥ 0 coated by a thin elastic layer −h ≤ x3 ≤ 0. Both the layer and half-space are
homogeneous, isotropic and linearly elastic. The layer is assumed to be thin and has a smooth contact with the half-space.
In particular, the normal component of the particle displacement vector and the normal component of the stress tensor are
continuous, while the shearing stress vanishes across the interface x3 = 0, see Achenbach [3] and Murty [22]. Note that the
same quantities related to the half-space and the layer have the same symbol but are systematically distinguished by a bar
if pertaining to the layer.

If it is assumed that a state of plane strain exists, whereby the x2 component of displacement vanishes and the x1 and x3
components are functions of x1, x3 and t only, i.e.

ui = ui(x1, x3, t), ūi = ūi(x1, x3, t), i = 1, 3, u2 = ū2 ≡ 0 (1)

where t is the time. Since the layer is made of isotropic elastic materials, the strain–stress relations take the form

σ̄11 = (λ̄ + 2µ̄)ū1,1 + λ̄ū3,3,

σ̄33 = λ̄ū1,1 + (λ̄ + 2µ̄)ū3,3,

σ̄13 = µ̄(ū1,3 + ū3,1)

(2)

where σ̄ij is the stress of the layer, commas indicate differentiation with respect to spatial variables xk, λ̄ and µ̄ are Lame
constants. In the absent of body forces, the equations of motion for the layer is

σ̄11,1 + σ̄13,3 = ρ̄ ¨̄u1,

σ̄13,1 + σ̄33,3 = ρ̄ ¨̄u3
(3)

where a dot signifies differentiation with respect to t . From Eqs. (2), (3) we have
Ū ′

T̄ ′
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where
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ū1 ū3
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