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a b s t r a c t

We consider an elastic plate of infinite length and constant width supported simply along
its two parallel edges and having a finite length crack along its centreline. In particular,
we look for and find trapped modes (localised oscillations) in the presence of the crack.
An explicit wide-spacing approximation based on the Wiener–Hopf technique applied to
incident wave scattering by semi-infinite cracks is complemented by an exact formulation
of the problem in the form of integro-differential equations. An application of a Galerkin
method for the numerical calculation of results from the latter method leads to a novel ex-
plicit ‘small-spacing’ approximation. In combination with the wide-spacing results this is
shown to provide accurate results for all lengths of crack.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper, Porter [1] provided numerical evidence for localised time-harmonic out-of-plane oscillations in a thin
elastic plate of infinite extent but constantwidth and simply supported along its twoparallel edges. Themechanismbywhich
these undamped bending waves remain trapped is provided by the presence of a circular hole cut out of the centreline of
the strip. Crucially, use is made of the fact that, below a certain non-zero critical frequency, free waves are prohibited from
propagating along the strip to infinity. Thus it was shown in [1] that trapped modes with displacements both symmetric
and antisymmetric about the centreline of the strip are possible when the edge of the circular hole is free and for any radius
provided that the circular hole is contained within the strip. In contrast no such modes are found when the edge of the
circular hole is clamped.

Themotivation behind the idea of Porter [1] came from earlier studies into the trapping of acoustic waves by sound-hard
circles in parallel-walled acoustic waveguides [2] in which similar critical frequencies could be generated by considering
motions with particular symmetries. Indeed, the method employed by Porter [1] of using multipole expansions followed
methods pioneered in the work of Callan et al. [2].

A large body of work on the subject of trapped waves in acoustics (whose formulation also applies to other physical
settings such as surface waves on water, quantum wires, and electromagnetics) in parallel-walled waveguide domains
emerged around the same time as the work of Callan et al. [2]; see [3] for a comprehensive review. This included the work
of [4] who gave a constructive proof of trapped modes for a waveguide containing a sufficiently-long rigid plate along the
centreline. Earlier, Evans and Linton [5] had used numerical methods in considering rectangular obstacles in waveguides
with the thin plate being a limiting case. Thus it was demonstrated that trapped waves exist for a variety of obstacles in
waveguides and, in 1994, Evans et al. [6] proved the existence of trapped waves for any symmetric sound-hard obstacle
placed in an acoustically-hard walled waveguide, including the geometry considered by Evans [4].
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Fig. 1. Geometry of the problem.

Given this background, it would be very surprising if circular holes with free edges, as considered by Porter [1], were the
only geometrical configuration capable of supporting trappedmodes in thin elastic platewaveguides. Thus herewe consider
a geometric configuration in common with that considered by Evans [4], whereby a finite length cut — or crack — is placed
along the centreline of the waveguide. Our primary aim is to provide strong evidence for the existence of trappedmodes for
such a configuration. A secondary purpose is to demonstrate analytical methods for doing this effectively.

Methods for solving problems involving thin cracks in elastic plates in a variety of settings have been considered by
numerous authors. For example, Norris andWang [7] sought the solution to incident planewave scattering by a semi-infinite
straight-line crack in an unbounded elastic plate using the Wiener–Hopf technique. Around the same time, Andronov and
Belinskii [8] used Fourier transform methods to develop integro-differential equations for wave scattering by straight cuts
of finite length, again spatially in unbounded plates. This was later extended to multiple finite length cracks in a slightly
more complicated model involving elastic plates bounded below by an incompressible fluid of finite depth (a model for
cracks in ice sheets) by Porter and Evans [9]. Like [8], they used a Fourier transform approach to develop integro-differential
equations. They also used an expansion of the unknowns in those equations suggested by Andronov and Belinskii [8] to
reduce the problem to the solution of a rapidly convergent infinite system of equations.

The approach taken in this paper is two-fold. First we develop a so-called wide-spacing approximation in which the
canonical problem of the scattering of waves incident from infinity along a waveguide containing a crack of semi-infinite
extent is considered. It is shown in Section 3 using the Wiener–Hopf technique, similar to that described briefly in [5], that,
for frequencies below the critical first cut-off frequency of the waveguide, waves are totally reflected and simple explicit
expressions are given for the phase of the complex reflected wave amplitude. This is used to provide estimates of trapped
mode configurations on the assumption that the crack is sufficiently long. A second approach, outlined in Section 4 is, in
common with the Wiener–Hopf method, based on Fourier transforms and results in integro-differential equations. These
are converted to infinite systems of algebraic equations using the same Galerkin approach used in [9]. Thismotivates a novel
explicit ‘small-spacing’ approximation to complement the wide-spacing approximation of the earlier section based upon a
one-term truncation of the infinite system of equations. In Section 5 it is shown how both types of approximations compare
with accurate results from a converged truncation of the system of equations based on the integral equation formulation. It
is demonstrated that both approximations work well beyond the assumed limits of applicability.

Finally in Section 6we summarise thework and discuss features of the solutionmethod, such as not requiring knowledge
of the roots of dispersion equations, that make the approaches used here attractive and adaptable to other problems.

2. Formulation of the problem

We consider an infinitely-long rectangular strip,−1 < y < 1, −∞ < x < ∞ occupied by a thin elastic plate of thickness
h whose time-harmonic vibrations described by the function ℜ{u(x, y)e−iωt

} are perpendicular to the plane it occupies in
equilibrium (See Fig. 1.). In the strip

(∆2
− k4)u = 0 (1)

is satisfied by u(x, y) where ∆ = ∂xx + ∂yy and k = ρhω2/D in terms of ρ, the areal density of the plate and D, the flexural
rigidity defined as 1

12Eh
3/(1 − ν) in terms of Young’s modulus E and the Poisson ratio ν. All lengths are scaled by the fixed

width 2 of the plate.
On the lateral boundaries of the strip the elastic plate is simply (roller) supported, so that

u = 0, and uyy = 0, on |y| = 1, −∞ < x < ∞. (2)

Along the centreline, the plate is cut on x ∈ C, where C = {x : |x| < a} so that here

(Bu)(x) ≡ uyy(x, 0) + νuxx(x, 0) = 0,
(Su)(x) ≡ uyyy(x, 0) + (2 − ν)uxxy(x, 0) = 0,


x ∈ C (3)

representing the vanishing of bending moment and shear stress on the free edges.
The geometric symmetry about y = 0 allows us to consider solutions of (1)–(3) which are symmetric/antisymmetric

about y = 0. We denote such solutions by us/a(x, y) such that

us(x, y) = us(x, −y) (4)
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