\$50 ELSEVIER

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Fabrication of a novel electrochemical immunosensor based on the gold nanoparticles/colloidal carbon nanosphere hybrid material

Rongjing Cui^{a,b}, Jun-Jie Zhu^{a,*}

- ^a Key Lab of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- b Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China

ARTICLE INFO

Article history:
Received 4 December 2009
Received in revised form 3 March 2010
Accepted 5 March 2010
Available online 15 March 2010

Keywords:
Colloidal carbon spheres
Hybrids
Protein immobilization
Electrochemical immunosensors

ABSTRACT

The gold nanoparticles/colloidal carbon sphere hybrid material was used for the immobilization of protein, and was developed in biosensing. The hybrid material was fabricated by the assembly of gold nanoparticles onto the surface of colloidal carbon spheres, which constructed a 3D antibody immobilization matrix on the glass carbon electrode and made the immobilized biomolecules hold high stability and bioactivity. After the sandwich-type immunoreaction, the formed HRP-labeled immunoconjugate showed good enzymatic activity for the oxidation of o-phenylenediamine by H_2O_2 . The approach provided a linear response range between 5 and 250 ng/mL with a detection limit of 1.8 ng/mL. The immunosensor showed good precision, acceptable stability and reproducibility and could be used for the detection of human IgG in real samples, which provided a potential alternative tool for the detection of protein in clinical laboratory.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The immunoassay combining the specific antigen–antibody (Ag–Ab) recognition for analytical purposes has been successfully applied to the fields such as food industry [1], environmental protection [2] and clinical control [3,4]. Electrochemical immunoassay has been of high interest due to the rapid and sensitive response as well as the simple and convenient operation.

In the field of electrochemical immunosensors, stability or activity of the immobilized biocomponents on solid support has been a long-standing goal. The emergence of nanomaterials has opened new opportunities for electrochemical immunosensors [5]. Some particular nanomaterials, such as gold nanoparticles (AuNPs) and semiconductor quantum-dots (QDs), have already been widely used due to their good biocompatibility [6–11]. Among them, carbon nanotubes (CNTs) have been extensively used in electrocatalysis and biosensing [12-14]. The insolubility of CNTs in most solvents, however, limits their application in designing CNTs-based biosensing devices. Though oxidation with acids is often used to functionalize carbon surface, the modification technique has some disadvantages, such as low degree of functionalization and the corrosion of the carbon surface [15]. Recently, the colloidal carbon spheres were synthesized through a facile microwave-hydrothermal technique [16]. Compared with other carbon materials, these kinds of material have abundance of functional groups, as well as better biocompatibility, dispersibility, and relatively active surface. Their surface composition and properties can facilitate loading with many nanoparticles (e.g., nobel-metal nanoparticles, QDs, and magnetic nanomaterials), which makes them very attractive in many applications such as catalysis, sensors, and separation. More importantly, the preparation of the carbon sphere is an absolutely environment friendly, low-cost, and fast approach. These advantages indicate that the carbon sphere and carbon sphere-based composite have potential application in biosensing. However, only a few researchers paid their attention to the biocompatibility and biosensing application of these materials. In our previous work, we demonstrated that asprepared AuNPs/carbon spheres composition can be conjugated with horseradish peroxidase labeled antibody (HRP-Ab₂) to fabricate HRP-Ab₂-AuNPs/carbon spheres bioconjugates as a label for sensitive detection of protein [16].

In this work, we have successfully developed an amperometric immunosensor based on self-assemble of AuNPs/colloid carbon spheres (AuNPs/C) hybrids on glass carbon electrode (GCE), which constructed an effective antibody immobilization matrix. In the case of the preparation of the electrochemical immunosensor, the goat anti-human IgG antibody (Ab₁) was immobilized on the AuNPs/C hybrids. The analytical procedure consists of the immunoreaction of the antigen (HIgG) with Ab₁, followed by binding HRP-labeled mouse anti-human IgG antibody (HRP-Ab₂). The formed HRP-labeled immunoconjugate showed good enzymatic activity for the oxidation of o-phenylenediamine by H₂O₂. The approach provided a linear response range between 5 and 250 ng/mL with a detection limit of 1.8 ng/mL. The high sen-

^{*} Corresponding author. Fax: +86 25 83594976. E-mail address: jjzhu@nju.edu.cn (J.-J. Zhu).

sitivity of the biosensor may be ascribed to the high specific surface area and the good conductivity of AuNPs/C hybrids. The immunosensor showed good sensitivity and stability, and could be prepared in mass-production. Compared with our previous report [16], the detection strategy is simple, practical and convenient. Moreover, the use of nanotechnology for diagnostic applications shows great promise to meet the rigorous demands of the clinical laboratory for fast response and cost-effectiveness.

2. Experimental

2.1. Reagents and apparatus

Glucose (analytical purity), $K_3Fe(CN)_6$ and $K_4Fe(CN)_6$ was purchased from Beijing Chemical Reagent Factory. Poly (diallyldimethylammonium chloride) (PDDA, 20%, w/w in water, MW = 200,000–350,000), HlgG enzyme-linked immunosorbent assay (ELISA) kits, lyophilized 99% bovine serum albumin (BSA) and Tween-20 were from Sigma Co. Human IgG (HlgG), goat antihuman IgG (Ab1) and HRP-labeled monoclonal mouse anti-human IgG (HRP-Ab2) were purchased from Zhengzhou Chuangsheng Biochemical Reagents (Zhengzhou, China). All other reagents were of analytical reagent grade and used without further purification. 0.1 M PBS with various pH was prepared by mixing the stock solutions of NaH2PO4 and Na2HPO4, and then adjusting the pH with 0.1 M NaOH and H_3PO_4 . Doubly distilled water was used throughout the experiments.

Electrochemical immunoassay measurements were performed on a CHI 660 electrochemical analyzer (Shanghai Chenhua, China) with a conventional three-electrode system comprised of platinum wire as the auxiliary electrode, saturated calomel electrode (SCE) as the reference and a modified GCE as the working electrode. The results of ELISA were measured by a spectrophotometric ELISA reader at a wavelength of 450 nm.

The morphologies of AuNPs/C hybrids were observed by transmission electron microscopy (TEM, JEOLJEM-200CX).

2.2. Fabrication of AuNPs/C hybrids modified GCE

The AuNPs/C hybrids were synthesized according to modifications of literature procedure [16]. Colloidal carbon spheres were prepared by microwave-hydrothermal method. 5 g glucose was dissolved in 40 mL water to form a clear solution, the obtained solution was treated at 170 $^{\circ}$ C for 20 min in microwave-accelerated reaction system. The brown products were isolated by three cycles of centrifugation/washing/redispersion in water.

The purified colloidal carbon spheres were functionalized with PDDA. First, colloidal carbon spheres were dispersed into aqueous solution of 0.25% PDDA containing 20 mM NaCl. After stirring for 20 min, a homogeneous brown suspension was obtained. Residual PDDA was removed by high-speed centrifugation and the complex was rinsed with water for at least three times. Then, 0.12 g colloidal carbon spheres were dispersed in 100 mL of the Au colloid solution and stirred for 10 min. After centrifugation, the light purple AuNPs/C composites were obtained, while the supernatant liquor was colorless. The composites were further washed with distilled water three times and redispersed in 50 mM pH 7.4 PBS.

The GCE with a diameter of 3 mm was used as the substrate to prepare the AuNPs/C hybrid film. Prior to the preparation procedure, the GCE was successively polished to a mirror finish using 0.3 and 0.05 μ m alumina slurry (Beuhler) followed by rinsing thoroughly with water. After successive sonication in 1:1 nitric acid, acetone, and doubly distilled water, the electrode was rinsed with doubly distilled water and allowed to dry at room temperature. 4 μ L

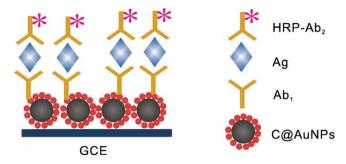


Fig. 1. The analytical scheme of AuNPs/C hybrids modified immunosensor.

of 5 mg/ml AuNPs/C hybrid solution was dropped on the pretreated GCE and dried in a silica gel desiccator.

2.3. Antibody immobilization and immunoreaction procedure

Ab₁ was immobilized onto the AuNPs/C hybrid modified GCE. 5.0 μ L of 0.5 mg/mL Ab₁ solution (50 mM PBS, pH 7.4) was spread onto the hybrids modified GCE surface. The electrode was incubated at 4 °C in a moisture atmosphere to avoid solvent evaporation. After incubation for 15 h, they were rinsed with PBS, 0.05% Tween (PBST) to remove physically absorbed Ab₁. The electrodes were then blocked with 2% BSA and 0.05% Tween-20 solution for 1 h at room temperature, and washed with PBST. After aspiration, Ab₁ modified electrodes incubated with 60 μ L of detecting HIgG samples for 50 min at 37 °C. By the binding reaction between Ab₁ and HIgG, the electrodes immersed into the 60 μ L of diluted HRP-Ab₂ solution for an incubation of 50 min. Finally, the electrodes were washed thoroughly with water to remove nonspecifically bound conjugations. The way to the immobilization of Ab₁ and the immunoassay procedure were shown in Fig. 1.

2.4. Measurement procedure

The immunosensor was then placed in an electrochemical cell containing 3.0 mL pH 7.0 PBS buffer, 2.0 mM o-phenylenediamine and 3.0 mM $\rm H_2O_2$, which was deaerated thoroughly with highly pure nitrogen for 5 min and maintained in nitrogen atmosphere at room temperature. In the presence of HRP immobilized on GCE surface, the electroactive species, 2,2′-diaminoazobenzene [17], was firstly produced. The differential pulse voltammetric (DPV) measurements were performed from -0.3 to -0.8 V with the pulse amplitude of 50 mV and the pulse width of 50 ms.

2.5. Commercial ELISA for HIgG.

A commercially available ELISA assay was utilized for method comparison studies. In sandwich ELISA with standard polystyrene 96-well plates, 50 μL of serum sample suspension was incubated at 37 °C for 30 min, and the wells were rinsed 3 times (3 min each) with 0.1 mol/L PBS (pH 7.4) containing 0.5 mol/L NaCl and 1 mL/L Tween 20. Then we added 50 μL of conjugate solution and incubation continued for 1 h. The wells were again rinsed and 50 μL of 3,3′,5,5′-tetramethylbenzidine reagent was added and incubated at 37 °C for 10 min. The enzymatic reaction was stopped by adding 50 μL of 2.0 mol/L H_2SO_4 to each well. The results of ELISA were measured by a spectrophotometric ELISA reader at a wavelength of 450 nm.

Download English Version:

https://daneshyari.com/en/article/190383

Download Persian Version:

https://daneshyari.com/article/190383

<u>Daneshyari.com</u>