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Increases in throughput and decreases in costs have facilitated large scale metabolomics studies, the simulta-
neousmeasurement of large numbers of biochemical components in biological samples. Initial large scale studies
focused on biomarker discovery for disease or disease progression and helped to understand biochemical
pathways underlying disease. The first population-based studies that combined metabolomics and genome
wide association studies (mGWAS) have increased our understanding of the (genetic) regulation of biochemical
conversions. Measurements ofmetabolites as intermediate phenotypes are a potentially very powerful approach
to uncover how genetic variation affects disease susceptibility and progression. However, we still face many
hurdles in the interpretation of mGWAS data. Due to the composite nature of many metabolites, single enzymes
may affect the levels ofmultiplemetabolites and, conversely, levels of singlemetabolitesmay be affected bymul-
tiple enzymes. Here, we will provide a global review of the current status ofmGWAS.Wewill specifically discuss
the application of prior biological knowledge present in databases to the interpretation of mGWAS results and
discuss the potential of mathematical models. As the technology continuously improves to detect metabolites
and to measure genetic variation, it is clear that comprehensive systems biology based approaches are required
to further our insight in the association between genes, metabolites and disease. This article is part of a Special
Issue entitled: From Genome to Function.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The “inborn errors of metabolism” as defined by Garrod at the
beginning of the twentieth century depict the first clearly recognized
examples of specific genetic defects leading to the accumulation of me-
tabolites in body fluids [1]. For example, in alkaptonuria, a genetic defect
in the enzyme homogentisate 1,2-dioxygenase leads to the accumula-
tion of homogentisic acid and its oxide alkapton in plasma and urine.
Detection of alkapton in urine is relatively simple in that exposure of
urine from affected patients to air results in black discoloration that is

readily detected by eye. Alkaptonuria is transmitted as a recessive
Mendelian trait with near complete penetrance and is an example of a
rare metabolic disease caused by rare genetic variants [2].

Changes in plasma metabolites are also pathogenic hallmarks of
common metabolic diseases such as type-2 diabetes. The defining
metabolic marker for type 2 diabetes is glucose, but hyperglycemia co-
occurs with changes in a variety of additional metabolites including
amino acids, lipids and lipoproteins. The high heritability of type 2
diabetes is not explained by rare genetic variants segregating in families,
but is thought to be caused by a variety of, and presumably combination
of common genetic variants. This paradigm is referred to as “common
disease–common variant” hypothesis and is pursued in so-called
genome wide association studies (GWAS). In GWAS, genome wide
genotyping platforms measure genotypes for hundred thousand to
millions of single nucleotide polymorphisms (SNPs) with minor allele
frequencies (MAF) generally larger than 0.05 and test each of those
SNPs for association with a specific trait [3]. A large number of GWAS
have been performed with a variety of both binary traits (e.g. type 2 di-
abetes) and quantitative traits (e.g. fasting glucose levels). These studies
have successfully uncovered genetic variants that contribute to disease
risk and also to the variation in quantitative phenotypes [4]. For
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example, for type-2 diabetes, thus far, more than 60 risk loci have been
identified, giving novel insights into the complex pathophysiology of
the disease. However, the risk attributed to individual SNPs in the vicin-
ity of even the strongest candidate gene, transcription factor 7-like 2
(TCF7L2), is relatively modest (odds ratios of 1.5–1.7) [5]. Moreover,
the combined genetic loci discovered to date explain only a small pro-
portion (less than 5%) of the observed heritability of type 2 diabetes.
Thus, a significant proportion of the observed heritability remains to
be uncovered [6].

Since a large proportion of the SNPs discovered through GWAS are
intergenic or lie within the intronic regions of genes, rather than in
the protein coding sequences, the genetic basis for the association is
often not obvious. It is possible that the SNPs discovered through
GWAS are in linkage disequilibrium (LD) with the real causal variant
that is not captured by the platform. This hypothesis to uncover
“missing heritability” is currently being tested by many labs using
next generation deep sequencing approaches to screen the whole ge-
nome or whole exome to locate the functional variants. Unfortunately,
thus far, these approaches have met with relatively limited success.
This lack of success may be associated with our inability to recognize
the causative variants among themany detected variants. Alternatively,
GWAS hits may constitute expression quantitative trait loci (eQTLs)
influencing the expression level of one or more genes nearby (cis-
eQTLs), or at a distant physical location (trans-eQTLs) [7,8]. Recently, a
combination of RNA and genome sequencing has provided in-depth
insight into the relation between genetic variation and transcriptome
variation and their association with functional variation [9].

Whereas it is often difficult to determine the effect of GWAS-
discovered SNPs on nearby or distant genes, it is clear that many differ-
ent genes and loci are involved in the pathogenesis of complex diseases
such as type 2 diabetes. In addition, it is also clear that environmental
factors including lifestyle (i.e. diet and physical activity) affect the
development of diabetes. Therefore, it may be more appropriate to con-
sider commonmetabolic disorders such as diabetes as the outcome of a
variety and often combination of mild “inborn errors of metabolism” in
conjunction with the environment. These mild “inborn errors of
metabolism” would be reflected by differences in the concentrations
of metabolites in cells and/or body fluids and could provide insight
into the “missing heritability”. The terms “genetically determined
metabotype” (GDM) [10] and “genetically influenced metabotype”
(GIM) have been coined for this [11]. GIM has been defined as relatively
prevalent genetic variants that lead to substantial modification in the
efficiency of metabolic conversions [12]. The combination of GIMs in
any given individual determines his metabolic individuality and thus,
in combination with environment and lifestyle, the risk for metabolic
disorders such as type 2 diabetes.

2. Metabolomics measurements

The detection of GIMs has been facilitated by technological develop-
ments in the field of metabolomics, where it is now possible to simulta-
neously measure hundreds of metabolites in large sets of biological
samples using automated procedures, and at relatively low cost
(10s of euros per sample). A variety of metabolomics platforms are
available, all having their own characteristics. Generally speaking, the
metabolomics techniques can be divided in two types of platforms
and two types of approaches. Metabolomics platforms based on mass
spectrometry (MS) in general require extensive sample preparation
and are used in-line with gas or liquid chromatography (GC-MS and
LC-MS). In contrast, nuclear magnetic resonance (NMR) based plat-
forms require relatively limited sample preparation and the samples
can be analyzed without prior separation procedures. MS and NMR
based platforms can be employed for targeted and/or non-targeted
approaches. In a targeted approach, the platform is optimized for
detection of a set of predefinedmetabolites and absolute or relative con-
centrations are determined using internal standards. In contrast, in a

non-targeted approach, the platform is optimized to capture global
snapshots of the test and reference samples and reports the differences.
To subsequently identify the metabolites underlying the differential
signal in the untargeted approach, additional analyses are required
that are frequently challenging. Therefore, metabolomics datasets
from a non-targeted approach often contain a large number of
‘unknown’ compounds. The main characteristic of all metabolomics
platforms is that a subset of compounds can be detected based on com-
mon chemical properties of these compounds rather than their biologi-
cal relatedness. No single analytical technique exists that is suitable for
the identification and quantification of all endogenous metabolites in
a sample.

Excellent reviews on the possibilities and challenges of the different
metabolomics platforms and approaches are available [13–15]. In
general, NMR spectroscopy is highly reproducible and quantitative.
However, NMR spectroscopy is relatively insensitive and metabolite
identification relies on specialized and mostly proprietary spectral
deconvolution algorithms. These algorithms may not always identify
the same metabolites and may not always base the identification of a
specific metabolite on the same spectral signal. In contrast, MS based
platforms provide highly precise information on metabolite mass from
which identity can often be inferred. However, metabolite quantifica-
tion requires spiked internal standards. Thus, a common challenge in
metabolomics on any platform is the reproducibility of reportedmetab-
olite levels across different laboratories. In addition to these platform-
specific challenges, additional variability may be caused by differences
in instrumentation and experimental setup conditions such as sample
preparation and extractionmethod, collection protocols, sourcemateri-
al (plasma, serum, urine, etc.), but also sample storage conditions and
batch effects. These aspects all require careful consideration when rep-
licating observations and poolingmetabolomics data for meta-analyses.

3. Genome wide association studies of metabolomics data

Since metabolomics data are (semi)quantitative, they are suited for
metabolomics GWAS (mGWAS), uncovering genetic variants that affect
metabolite levels. One of the first studies employed an MS-based
platform that could identify and quantify up to 363 metabolites in 284
individuals [10]. The study reported that common SNPs explained up
to 12% of the observed variance in metabolite levels. Moreover, the
study determined that the explained variance could be dramatically in-
creased by considering ratios of metabolites. This is because analyzing
ratios of metabolite concentrations potentially reduces the variation in
the dataset when the pair of metabolites is related to the substrate
and product of a given enzymatic reaction. Furthermore, where a SNP
impacts such ametabolic reaction, consideration of ratios leads to a dra-
matic reduction in the p-value of association. For example, rs174548, a
SNP in an intron of the fatty acid delta-5 desaturase 1 (FADS1) gene is
associated with a phosphatidylcholine moiety, PC C36:4 (36 denotes
the number of carbons in the side chains and 4 denotes the number of
double bonds) levels with a p-value of 4.52 × 10−8, slightly above the
genome-wide threshold. However, association of the same SNP with
the ratio of PC C36:4/PC C36:3 has a p-value of 2.4 × 10−22, a reduction
by 14 orders of magnitude. The FADS1 enzyme introduces a double
bond in long chain polyunsaturated fatty acids and the moieties PC
C36:3 and PC C36:4 are related to the substrate and product of this en-
zymatic reaction.

A consistent theme that has emerged from mGWAS is that signifi-
cant SNP–metabolite associations point to the underlying biological
mechanism. This is in contrast to GWAS of clinical endpoints where
unravelling the underlyingmechanism is oftenmuchmore challenging.
In addition to FADS1, several other associations have shown that the
functional nature of the genematcheswith the biochemical characteris-
tics of the associated metabolite. For example, SNPs in the gene GLS2
(glutamine synthase 2) have been found associated with glutamine
[16,17].This is a biologically plausible association because the enzyme
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