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a b s t r a c t

Clinical studies suggest a link between peripheral insulin resistance and cognitive dysfunction. Inter-
estingly, post-mortem analyses of Alzheimer disease (AD) subjects demonstrated insulin resistance in the
brain proposing a role for cognitive deficits observed in AD. However, the mechanisms responsible for
the onset of brain insulin resistance (BIR) need further elucidations. Biliverdin reductase-A (BVR-A)
emerged as a unique Ser/Thr/Tyr kinase directly involved in the insulin signaling and represents an up-
stream regulator of the insulin signaling cascade. Because we previously demonstrated the oxidative
stress (OS)-induced impairment of BVR-A in human AD brain, we hypothesize that BVR-A dysregulation
could be associated with the onset of BIR in AD. In the present work, we longitudinally analyze the age-
dependent changes of (i) BVR-A protein levels and activation, (ii) total oxidative stress markers levels (PC,
HNE, 3-NT) as well as (iii) IR/IRS1 levels and activation in the hippocampus of the triple transgenic model
of AD (3xTg-AD) mice. Furthermore, ad hoc experiments have been performed in SH-SY5Y neuro-
blastoma cells to clarify the molecular mechanism(s) underlying changes observed in mice. Our results
show that OS-induced impairment of BVR-A kinase activity is an early event, which starts prior the
accumulation of Aβ and tau pathology or the elevation of TNF-α, and that greatly contribute to the onset
of BIR along the progression of AD pathology in 3xTg-Ad mice. Based on these evidence we, therefore,
propose a new paradigm for which: OS-induced impairment of BVR-A is firstly responsible for a sus-
tained activation of IRS1, which then causes the stimulation of negative feedback mechanisms (i.e.
mTOR) aimed to turn-off IRS1 hyper-activity and thus BIR. Similar alterations characterize also the
normal aging process in mice, positing BVR-A impairment as a possible bridge in the transition from
normal aging to AD.

& 2015 Elsevier Inc. All rights reserved.

1. Introduction

During the last years a growing number of observations high-
lighted a close interconnection between Alzheimer disease (AD)
and common diseases of modern adulthood, including obesity and
type 2 diabetes mellitus (T2DM) [1,2]. Furthermore, epidemiolo-
gical studies showed that hallmarks of peripheral metabolic dis-
orders, such as glucose intolerance and/or impairment of insulin
secretion, are associated with a higher risk to develop dementia or

AD [2–5], whereas patients with AD more frequently present with
an impaired glucose metabolism or T2DM [6,7].

This clinical evidence raised doubts about the correct func-
tioning of insulin signaling especially in light of the neurotrophic
actions mediated by insulin [8]. Indeed, the activation of insulin
signaling cascade does not induce a significant glucose uptake in
the brain as it does in peripheral tissues [9,10], but, rather, it
modulates other important functions through the activation of the
two main pathways downstream to the insulin receptor (IR):
(i) the phosphoinositide-3 kinase (PI3K) pathway, which is in-
volved in the maintenance of synaptic plasticity and memory
consolidation [11,12]; and (ii) the mitogen-activated protein ki-
nase (MAPK) cascade, which is responsible both for the induction
of several genes required for neuronal and synapse growth,
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maintenance and repair processes, as well as serving as a mod-
ulator of hippocampal synaptic plasticity that underlies learning
and memory [13].

Interestingly, human postmortem studies have convincingly
shown that a dysregulation of the insulin signaling with reduced
downstream neuronal survival and plasticity mechanisms are
consistent and fundamental abnormalities in AD [9,14,15]. In
particular, AD brain is characterized by a phenomenon known as
brain insulin resistance (BIR) – broadly defined as the inadequate
response to insulin by target cells [13] – due to reduced insulin
receptor (IR) activation and increased levels of inhibitory phos-
phorylation of the insulin receptor substrate-1 (IRS1) on specific
serine (Ser) residues [9,14,15].

Consistent with prior studies from the Butterfield group and
others [20–23], some of the common clinical signs and symptoms
of T2DM and AD could arise from an impairment of the activity of
biliverdin reductase-A (BVR-A). BVR-A, the main isoform of BVR
[24], is a pleiotropic enzyme primarily known for its canonical
activity (reductase activity) named for the reduction of heme-de-
rived biliverdin (BV) into the powerful antioxidant and anti-
nitrosative molecule bilirubin (BR) [25,26]. But BVR-A also has a
unique serine/threonine/tyrosine (Ser/Thr/Tyr) kinase directly in-
volved in insulin signaling [22,27]. Indeed, BVR-A is a direct target
of IR, which stimulates BVR-A kinase activity (thereafter indicated
as BVR-A activation) via Tyr phosphorylation [22]. Once activated,
BVR-A is able to phosphorylate IRS1 on Ser inhibitory domains,
thus representing an upstream regulator in the insulin signaling
cascade [22].

We have previously reported the oxidative stress-induced im-
pairment of BVR-A in the hippocampus of AD and amnestic mild
cognitive impairment (aMCI) subjects due to reduced Tyr phos-
phorylation and increased 3-nitrotyrosine (3-NT) modifications,
thus questioning about the real neuroprotective role of BVR-A
[20,21,28]. Based on these results and given the above background,
decreased BVR-A activation would have deleterious effects in-
cluding the inhibition of the insulin signaling pathway.

In the present work, we longitudinally analyze the age-de-
pendent changes of BVR-A protein levels and activation, as well as
IR/IRS1 levels and activation in the hippocampus of the triple
transgenic model of AD (3xTg-AD) mice, which develop both Aβ
and tau pathologies in an age-dependent manner [29]. The hip-
pocampus is one of the brain regions mostly affected by amyloid
beta (Aβ) and tau pathologies in the 3xTg-AD mice and whose
alterations have major functional impact in AD symptoms. Further,
we profile the molecular mechanisms responsible for the onset of
BIR, by focusing on the contribution of oxidative/nitrosative stress.
Our data suggest that BVR-A integrates both oxidative/nitrosative
stress- and insulin-mediated signaling, both mechanisms dysre-
gulated in AD brain.

2. Materials and methods

2.1. Animals

3, 6, 12 and 18 months-old 3xTg-AD male mice (n¼6 per group)
and their wild-type (WT) male littermates (n¼6 per group) were
used in this study. The 3xTg-AD mice harbour harbour 3 mutant
human genes (APPSwe, PS1M146V, and tauP301L) and have been ge-
netically engineered by LaFerla and colleagues at the Department
of Neurobiology and Behavior, University of California, Irvine [29].
Colonies of homozygous 3xTg-AD and WT mice were established
at the vivarium of Puglia and Basilicata Experimental Zooprophy-
lactic Institute (Foggia, Italy). The 3xTg-AD mice background strain
is C57BL6/129SvJ hybrid and genotypes were confirmed by PCR
on tail biopsies [29]. The housing conditions were controlled

(temperature 22 °C, light from 07:00–19:00, humidity 50%–60%),
and fresh food and water were freely available. All the experiments
were performed in strict compliance with the Italian National
Laws (DL 116/92), the European Communities Council Directives
(86/609/EEC). All efforts were made to minimize the number of
animals used in the study and their suffering. Animals were sa-
crificed at the selected age and the hippocampus was extracted,
flash-frozen, and stored at �80 °C until total protein extraction
and further analyses were performed.

2.2. Immunohistochemistry

Briefly both 3xTg and WT mice at 3, 6, 12 and 18 months of age
(n¼3 per group, per genotype) were intra-cardioventricularly
perfused with saline followed by fixation solution (4% paraf-
ormaldehyde in PBS 0.1 M, pH 7.4) at a flow rate of 36 ml min�1

[30]. Brains were post-fixed in the fixation solution for 1 day and
then transferred in 0.02% sodium azide in PBS. Free-floating cor-
onal sections of 50 μm thickness were obtained using a vibratome
slicing system (microM, Walldorf, Germany) and stored at 4 °C in
0.02% sodium azide in PBS. The endogenous peroxidase activity
was quenched for 30 min in 0.3% H2O2. Sections were then pre-
treated in 90% formic acid and incubated overnight at 4 °C either
with the monoclonal 6E10 antibody (1:3000, Signet Laboratorie–
Covance, Emeryville, CA, USA, #sig-39320) for Aβ staining, or with
the human-specific anti-tau antibody, HT7 (1:2000, Thermo Sci-
entific Pierce Product, Rockford, IL, USA, #MN1000). After re-
moving the primary antibody in excess, sections were incubated
with the appropriate secondary antibody and developed with
diaminobenzidine substrate using the avidin-biotin horseradish
peroxidase system (Vector Laboratories, Inc, Burlingame, CA, USA,
#SK-4100; #PK-6100). All stained slices were viewed using a Nikon
80i Eclipse microscope equipped with a DS-U1 digital camera, and
NIS-elements BR software (Nikon, Tokyo, Japan). The intensity of
Aβ and tau immunostaining was measured semi-quantitatively as
regional optical density using the Scion Image software, as pre-
viously reported [30–32]. Per each animal, measurements were
obtained in at least 3 consecutive sections containing the region of
interest. The averaged optical densities of non-immunoreactive
regions of each section were used for background normalization.

2.3. Cell culture and treatments

The SH-SY5Y neuroblastoma cells were grown in Dulbecco's
modified Eagle's medium (DMEM) supplemented with 10% fetal
bovine serum (FBS), 2 mM L-glutamine, penicillin (20 units/ml)
and streptomycin (20 mg/ml), (GIBCO, Gaithersburg, MD, U.S.A.).
Cells were maintained at 37 °C in a saturated humidity atmo-
sphere containing 95% air and 5% CO2. Cells were seeded at density
of 40�103/cm2 in 6 wells culture dishes. After 24 h medium has
been replaced with DMEM with 1% FBS and cells have been treated
with (i) insulin, (ii) H2O2 in separate sets of experiments as fol-
lowing described. To test the responsiveness of our cellular model
to insulin signaling the experiments have been performed as
previously described with minor modifications [33]. Briefly, SH-
SY5Y neuroblastoma cells were pre-treated with insulin (humu-
linsR, Ely-Lilly, Inadianapolis, IN, USA) 0.1 mM or vehicle (PBS) for
24 h. Insulin concentration has been selected based on previous
reports [22,33]. Then, medium was discarded, cells were washed
twice with PBS, and rechallenged with DMEM with 1% FBS con-
taining insulin (0.1–0.5–1–5 mM) or vehicle (PBS) for an additional
hour to mimic insulin over-exposure. To test the effects of oxida-
tive/nitrosative stress on the insulin signaling, cells have been
treated with peroxynitrite (ONOO� , 50–500 mM) or hydrogen
peroxide (H2O2, 1–50 mM) (Sigma-Aldrich, St Louis, MO, USA,
#16911) or vehicle (PBS) for 24 h. To test the effects produced by
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