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Patients with multiple sclerosis (MS) often experience unpredictable recurrent relapses with periods of
remission. The modeling of MS relapse data is complicated because both within-subject serial dependence
between relapses and between-patient heterogeneity may exist. We compare six statistical methods for
assessing the treatment efficacy in reducing the frequency of relapses in MS clinical trials. All methods can be
implemented in SAS®, and are grouped into two classes, one based on Poisson-type regressions for count
data and the other on Cox proportional hazards models for time to relapse. We apply these models to the
data of a Tysabri® (Natalizumab) MS trial and interpret the differences in results based on the underlying
assumptions. Negative binomial regression is recommended for evaluating the overall treatment effect
because of its simplicity and efficiency.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Relapses are common recurrent events with serious consequences
among patients with multiple sclerosis (MS). A relapse is defined as
new or worsening neurological symptoms with duration greater than
24 h, preceded by a minimum of 30 days of clinical stability or
improvement. Relapse-related outcome measures in MS clinical trials
often include the number of relapse-free patients and time to first
relapse [1]. However, both these measures are inefficient because the
information following the first relapse is ignored, resulting in a
misleading conclusion if the treatment fails to influence the first
relapse but reduces the risk of subsequent relapses [2]. Annualized
relapse rate (ARR) has been commonly used as a primary efficacy
endpoint in phase III MS clinical trials [3] as it takes into account all
relapses experienced during the period of observation.

A variety of statistical methods have been developed for analyzing
recurrent events and can be used to assess whether a treatment can
reduce the frequency of relapses in MS clinical trials. These include
approaches based on counts of relapses and survival-time approaches
based on time to relapse. It is unclear to manyMS clinicians how these
models differ from each other and which are the most appropriate for
MS relapse data. This paper attempts to explain the differences in
assumptions, parameter estimates and interpretations of these
methods, and to provide guidelines for analyzing relapse data in MS
clinical trials. We focus on several popular approaches implemented
in the SAS® statistical package.

For approaches based on counts, the endpoint is the number of
relapses that occurred in a given period of time. A count can take only
non-negative integer values. Such data are non-normally distributed,
and the variance varies with the mean. It might be inappropriate to
analyze count data using ordinary linear regression because the linear
model assumes homogeneity of variance and could produce non-
sensible, negative predicted values [4]. Some researchers may rescale
the counts to a dichotomy (e.g., “relapsed / did not relapse”) or a set of
ordered categories (e.g., 0, 1, 2, and ≥3), and analyze the data using
the logistic regression model or the generalized Cochran–Mantel–
Haenszel (CMH) test. Reduction of counts into categories wastes
information and may dilute statistical power [4]. A simple model for
analyzing count data is to assume that they are distributed according
to a Poisson distribution. However, the Poisson distribution cannot
account for the over-dispersion (i.e., the variance is larger than the
mean) typically exhibited in MS relapse data.

Over-dispersion is the rule rather than the exception in practice [5]
and can arise in several ways [6]. It can be a result of heterogeneity
among patients, that is, each patient has a constant relapse rate, but
some patients may bemore prone than others to relapse, partly due to
genetic and environmental differences or unmeasured covariates.
Over-dispersion can also be a consequence of contagion, that is,
occurrence of an early relapse increases a patient's risk for subsequent
ones. Both heterogeneity and contagion mechanisms cause statistical
correlation between relapses. Specifically, a patient with a history of
relapse is likely to continue to experience more relapses, while
subjects with no history of relapse tend to experience fewer future
relapses. So the data containmore zero and large counts, and aremore
spread than that expected under the assumption of a Poisson
distribution. The two mechanisms for over-dispersion are
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indistinguishable given only the total counts.Wewill introduce quasi-
Poisson and negative binomial (NB) models for over-dispersed count
data. The NB distribution has been recommended for analysis of
counts and rates in psychology [4], MS lesion data [7], and fall
prevention trials [8].

While the aggregated count may be a good primary endpoint for
assessing overall treatment efficacy, the use of a time-to-relapse
endpoint allows the study of trend in relapse rates and treatment
effects, as well as the possibility to distinguish heterogeneity and
contagion [6]. In the Cox-based models, the serial dependence between
successive relapses can be modeled by conditioning on the appropriate
aspects of previous history of the patients. The dependence due to
subject heterogeneity can be modeled via the subject-specific random-
effects models or population-averaged (PA) proportional hazards
models. The random-effects model introduces a random variable to
explain dependence among relapses. The PA approaches estimate
parameters by assuming independence between relapses, and estimate
the standard errors (SE) using the robust “sandwich” method [9] to
account for the dependence between relapses. While the random-
effects model focuses more on how treatment affects individuals'
relapse rates, the PA models evaluate how treatment affects the
population-averaged relapse rates [10]. We will review several PA
models since inference about population-averaged treatment effects is
often of major interest.

The rest of this paper is organized as follows. Section 2 reviews
several major statistical methodologies. Their differences will be
illustrated through the analysis of relapse data of a Tysabri®

(Natalizumab) MS trial in Section 3. Finally, we discuss our findings,
and make a recommendation for future MS studies. The recommen-
dation can be applied to any analysis of count data where over-
dispersion is evident.

2. Statistical methods

This sectionwill review two Poisson-type regressions for the count
outcomes and four Cox proportional hazard models for the time-to-
relapse endpoints. The quasi-Poisson and NB regressions are
implemented in the SAS® procedure, GENMOD. All four Cox survival
models can be fitted using the SAS® PHREG procedure.

2.1. Poisson regression for counts outcomes

Poisson regression is frequently used to model data in the form of
counts. In MS trials, the outcome is the number of relapses (y) during
a follow-up period (t), the time from study entry to the end of the
study or loss to follow-up. The primary question of interest is whether
treatment can reduce the ARR. Poisson regression requires the
assumption that the successive relapses occur independently at a
constant rate (λ) among all patients in each subgroup stratified
according to treatment assignments and important prognostic factors
[5]. Thus, response y follows a Poisson distribution with mean μ=λt,
so that the expected number of relapses is proportional to the length
of follow-up time. The logarithm of the relapse rate is assumed to be a
linear function of the treatment (x=1 if a patient receives the new
treatment and x=0 if the patient receives control) and other possible
explanatory variables (z), that is,

logðλÞ = α + β1x + β2z or equivalently logðμÞ = logðtÞ + α + β1x + β2z;

where α denotes intercept, and exp(β1) is the ratio of ARR between
treatment groups, while controlling for covariates z. The model
implies that the ratio of ARR between treatment groups is common
across the covariates.

A property of the Poisson distribution is that its variance equals its
mean. However, relapse data often exhibit over-dispersion with a
variance much greater than the mean, as discussed in Section 1.

Ignoring over-dispersion still yields unbiased parameter estimates, but
their precision and statistical significance will be overestimated [7].

A simple way to account for over-dispersion is to inflate the
variance by a factor ϕ via the quasi-Poisson approach [5],

VarðyÞ = ϕEðyÞ = ϕμ :

The dispersion parameter ϕ can be estimated by the Pearson χ2

statistic divided by its degrees of freedom. The test statistic will be
adjusted correspondingly. The correction for over-dispersion does not
change the parameter estimate, and no probability distribution is
specified in the quasi-Poisson approach (this will be discussed further
in Section 2.2).

2.2. Negative binomial regression for the analysis of numbers of relapses

An alternative way to handle over-dispersion is tomodel it directly
via negative binomial (NB) regression. Two features [2] of the NB
distribution make it particularly suitable for MS relapse data: (1) it
allows the count frequencies to be highly skewed and decrease
monotonically from a modal value (i.e., the most frequently occurring
value) of zero; and (2) its variance is always bigger than its mean.

The NBmodel can be derived as a Poisson–gammamixture: if each
patient relapses according to a constant Poisson rate, which varies in
the subgroup according to a gamma distribution, the marginal
distribution of the total counts in the subgroup follows a NB
distribution [2]. Specifically, each patient is assumed to have their
own relapse rate (λi) that varies around the average value (λ) in the
subgroup, which can bemodeled via a random variable (εi) withmean
1 and variance κi

λi = εiλ; and μi = εiλt = εiμ :

The variable εi reflects uncertainty about the individuals' rates.
Subjects with εiN1 are more likely to relapse than subjects with εib1.
Under the above assumption, the mean of the total count is still E[y]=
μ=λt, but the variance becomes

VarðyÞ = μ + κiμ
2
;

where the first term on the right side denotes the Poisson variance, and
the second term is the variance due to heterogeneity. If the εi's are
independently identically distributed as gamma random variables, then y
follows a NB distribution.

The NB distribution involves two parameters: the mean μ reflects
the average rate while the dispersion parameter κ measures the
degree of heterogeneity in the subgroup. A large κ indicates great
variability in individuals' risk to relapse. If κ is small, the individuals'
rates are more homogeneous and the process is approximately a
Poisson. Indeed, the NB model becomes a Poisson model when κ=0.

In the NB model, the variance-to-mean ratio changes linearly with
the mean. In the quasi-Poisson model, the variance-to-mean ratio is
assumed to be constant, which cannot hold exactly in the presence of
subject heterogeneity. If the variance is linear in the mean, then κi,
whichmeasures the degree of heterogeneity in individuals' rates, shall
be proportional to the mean of the total count μ=λt, which depends
on the length of follow-up time. That is, there is greater uncertainty
about the risk of relapse in patients with smaller expected counts or
shorter follow-up time, which sounds unreasonable.

2.3. Cox proportional hazard models for time to event outcomes

The Cox proportional hazardmodel takes into account time to relapse
and does not assume a constant hazard rate (i.e., the instantaneous
relapse rate at a specific time). Instead, it assumes that the ratio of risk for
a relapse between two patients is constant over time [11].
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