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Abstract

The disposable soma theory of aging was developed to explore how differences in lifespans and aging rates could be linked to life history trade-

offs. Although generally applied for multicellular organisms, it is also useful for exploring life history strategies of single-celled organisms such as

bacteria. Motivated by recent research of aging in E. coli, we explore the effects of aging on the fitness of simple single-celled organisms. Starting

from the Euler-Lotka equation, we propose a mathematical model to explore how a finite reproductive lifespan affects fitness and resource

allocation in simple organisms. This model provides quantitative predictions that have the potential for direct comparison with experiment,

providing an opportunity to test the disposable soma theory more directly.
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1. Introduction

Single-celled organisms, as well as any organisms where the

soma and the germ line are not separate, were once expected to

be immortal (Williams, 1957). Later it was observed that some

asymmetrically dividing single-celled organisms, such as

Saccharomyces cerevisiae (Mortimer and Johnston, 1959)

and Caulobacter crescentus (Ackerman et al., 2003) age and

die. Therefore, it was hypothesized that the distinction between

organisms that age and those that do not depends upon

asymmetry in reproduction (Partridge and Barton, 1993).

Recent research by Stewart et al. (2005) indicates that even

bacteria that appear to divide symmetrically, such as

Escherichia coli, actually produce functionally asymmetric

cells during cell division. They identified one of the cells as the

aging parent cell that produces offspring that are ‘‘rejuve-

nated,’’ and found evidence that these older cells reproduce

more slowly as they age, and may even stop reproducing.

Current theories of aging seek to combine principles of

evolution with theories from physiology, microbiology, and

genetics (Rauser et al., 2005). For instance, the mutation

accumulation theory of aging hypothesizes that lethal genetic

mutations which affect organisms late in life will not be

selected against, because the force of selection decreases with

age. Over time, these negative, late-acting mutations can

accumulate, resulting in increased mortality as organisms age

(Medawar, 1952). The antagonistic pleiotropy theory takes this

a step further and hypothesizes that these late acting mutations

may be selected for if they benefit an organism earlier in life

(Williams, 1957; Hamilton, 1966, 1996). On the other hand, the

reliability theory of aging and longevity hypothesizes that over

time organisms wear out and eventually fail due to the loss of

irreplaceable parts (Gavrilov and Gavrilova, 1991, 2001).

Another theory is the disposable soma theory of aging

(Drenos and Kirkwood, 2005; Finch and Kirkwood, 2000;

Kirkwood, 1981). This theory predicts that because organisms

have a finite amount of energy to use for all life functions, there

is a trade-off between repairing and maintaining the soma or

reproducing. If energy is used to maintain the soma, there might

not be enough energy to reproduce, and vice versa. We

therefore expect that the optimal allocation strategy, which

would maximize the representation of an organism’s genes in

future generations, will not be one that allows an organism to

maintain the soma indefinitely.
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These theories make similar predictions about how aging

and lifespan will evolve in response to extrinsic mortality. For

instance, if an organism experiences high natural mortality,

natural selection will result in greater investment in offspring

than in soma. High natural mortality is also predicted to

encourage earlier maturation, so an organism will be less likely

to die before having an opportunity to reproduce. Organisms

with low natural mortality are predicted to maintain the soma

for longer, produce offspring less frequently, and experience

longer lives. However, disposable soma theory also predicts

how natural mortality is expected to influence life span and

reproductive schedules, and gives insight into responses to

aging in terms of allocation of resources for repair and

maintenance.

2. Fitness models of bacteria and simple organisms

Quantitative models can be useful for exploring how

evolutionary trade-offs shape aging and senescence in these

simple organisms. In this paper we utilize a simple

mathematical model to explore the effect of senescence, in

the form of finite reproductive lifespan, on bacterial fitness and

resource allocation. We first introduce a baseline model without

aging to provide a point of reference with which to compare the

model with aging, then present a model of life histories of

simple organisms that includes aging.

2.1. The baseline model: population without aging

Various approaches are available for modeling life-history

strategies (Charlesworth, 1980; Roff, 2002; Stearns, 1992). We

use the Euler-Lotka equation to explore the effects of life

history choices on fitness of single-celled organisms. Our

selected measure of fitness is the intrinsic rate of natural

increase, for populations living in a constant environment with

age-dependent reproduction and mortality schedules, denoted

by r. The Euler-Lotka equation in continuous time is given by:

1 ¼
Z 1

0

e�rxlxbxdx: (1)

Here the probability of surviving to age x is denoted as lx and the

rate of production of offspring by an individual of age x is bx.

Before examining a model with aging, we review a baseline

model that assumes infinite reproductive potential. Kirkwood

(1981) proposed a simple model of bacterial fitness for cells

that divide perfectly symmetrically, based upon (1), with

appropriate choices of bx and lx for a clonally reproducing

population. First, let lx be an exponentially decreasing survival

probability, lx = e�mx, where m is the constant extrinsic

mortality rate. The birth rate depends upon the doubling time,

T. If an individual bacteria survives to time T, it divides. Since

the division is perfectly symmetric, we cannot tell the

difference between the two resulting cells. We therefore

consider both of the cells to be identical offspring, and the

original bacteria is essentially ‘‘dead’’ (rather like a semelpar-

ous organism). If the offspring have the same doubling time as

the original cell, an appropriate ‘‘birth’’ rate would therefore be

bx = 2d(x � T), where d(�) is the Dirac delta function.1 With

these expressions for lx and bx the Euler-Lotka Eq. (1) becomes:

2e�ðmþrÞT ¼ 1: (2)

In Fig. 1, we show this functional relationship between fitness,

r, mortality rate, m, and doubling time, T. As m and T increase, r

decreases. As T! 0, r!1 regardless of the value of m. As m

and T increase, r decreases.

Trade-offs between mortality and reproduction can be

explored by examining how resource allocation impacts the

mortality rate and doubling time of the bacteria. We denote the

fraction of resources allocated for growth and reproduction by

r, and the fraction allotted for maintenance/repair and survival

by 1 � r. Following Kirkwood (1981), we parameterize the

mortality, m, and doubling time, T, in terms of r as:

TðrÞ ¼ T0

r
(3)

mðrÞ ¼ m0

1� r
: (4)

Here, T0 can be thought of as the minimum possible time it

would take for the bacteria to reproduce if all of its resources

are allocated to growth; m0 is the minimum mortality of the

bacteria if all resources are allocated to survival. Solving for r in

(2) with the expressions for T and m in (3)–(4) yields:

r ¼ r

T0

ln 2� m0

1� r
: (5)
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Fig. 1. The intrinsic rate of natural increase, r, as a function of the doubling

time, T, and the mortality, m.

1 The Dirac delta function is defined as a unit impulse at some point x0 such

that:

dðx� x0Þ ¼ 0; x 6¼ x0Z 1
�1

dðx� x0Þdx ¼ 1;

and given an arbitrary function f(x):Z 1
�1

f ðxÞdðx� x0Þdx ¼ f ðx0Þ:
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