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a b s t r a c t

The presence and concentrations of modified proteins circulating in plasma depend on rates of protein
synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage
were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up
to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However,
advances in analytical techniques using mass spectrometry and immuno-affinity purification methods,
have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific
sites is now being characterised. The damaging reactive species that cause protein modifications in
plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric
oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase
(MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be
caused by oxidized lipids and glucose autooxidation.

In this review, we focus on redox regulatory control of those enzymes and processes which control
protein maturation during synthesis, produce reactive species, repair and remove damaged plasma
proteins. We have highlighted the potential for alterations in the extracellular redox compartment to
regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular
secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory mole-
cules, changes in redox state may be transmitted to distant sites.

& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Introduction

Plasma proteins perform a range of important physiological func-
tions such as maintaining homeostatic blood volume, transporting
other molecules for delivery at distant sites, through to regulating
endocrine systems and inflammatory responses. With half-lives ran-
ging from minutes to a month (Table 1) and with biosynthetic and
turnover rates decreasing during ageing, their potential to accumulate
damage differs markedly by protein and over time [1,2]. Consequently,
modifications to plasma proteins may exert a range of diverse effects
according to the sites of damage and are reported to increase in
frequency with age, acute and chronic diseases. Therefore, modified
proteins have the potential to serve as important biomarkers and may
in turn signpost aetiological mechanisms [3]. An improved under-
standing of factors that influence the steady state concentrations of
damaged proteins is important for evaluating their sensitivity as
biomarkers and also their potential as targets for therapeutic inter-
ventions that prevent or repair or modifications. The focus of this
review is on the role of redox regulation of steady state protein
damage in plasma.

In reviewing the redox regulation of protein damage in plasma,
we will consider (1) errors introduced in biosynthesis e.g. during
ER stress that affect glycosylation, folding and secretion: (2) redox
control of myeloperoxidase (MPO), NAPH oxidase isoforms (NOX),
nitric oxide synthases (NOS), xanthine oxidase (XO) which
increase protein exposure to reactive oxygen and nitrogen species
(ROS, RNS) in the plasma and result in chlorination, nitration,
nitrosylation, chlorination, methionine oxidation, disulphide for-
mation, HNE-protein adducts: and (3) regulation of hepatic and
macrophage receptors, extracellular reducing enzymes and pro-
teins such as protein disulphide isomerase (PDI), thioredoxin1
(Trx1), peroxiredoxins (Prx) and oxidoreductases that affect steady
state level of plasma protein damage.

Historically, the proteins analysed most frequently for damage
were the more abundant plasma proteins (e.g. albumin and
immunoglobulins) occurring at up to 10 orders of magnitude
higher concentrations than other proteins found in plasma; more
recently improved purification methods and higher sensitivity
mass spectrometry techniques have enabled less abundant pro-
teins to be examined [4].

Redox regulation in protein synthesis

There is little protein specificity for ROS and RNS, with reactions
often proceeding at diffusion controlled rates, such that the proteins
most likely to be damaged by ROS are those in closest proximity to
their sites of production and at the highest concentrations.

During protein synthesis, secretory and membrane proteins
co-translationally enter and are folded in the endoplasmic reticulum
(ER) and Golgi. Oxidative disulphide bond formation and glycosylation
facilitate correct protein folding prior to transport to the plasma

membrane for export; misfolded ER proteins are recognised and
unfolded by ER resident reductases and chaperones before undergoing
retrotranslocation to the cytosol [5].

Oxidative maturation is achieved by highly regulated enzymatic
transfer of two electrons [6]. The first conserved ER-resident oxidase
in the pathway to be identified that generates disulphide at the
expense of reducing oxygen is oxidoreductin 1 (Ero1) which occurs
in two discretely regulated and distributed forms, alpha and beta;
however, in contrast to observations in yeast, double Ero1 knockout
animals show little phenotype. Indeed, normal ER redox conditions
can be established after a strong reductive challenge, although this
occurs more slowly than in wild-type cells, suggesting a role for
other oxidative enzymes in disulphide formation [7]. One candidate
family is the protein disulphide isomerases (there are 20 reported
family members in mammalian cells) that include PDI, glutathione
peroxidase (GPx) 7, GPx8 and which interact with Ero1alpha [8].
Ero1alpha activity is inhibited by an intramolecular disulphide switch
between the active-site Cys94 and Cys131 and is re-activated by
available reduced PDI. In support of this regulatory mechanism,
overexpression of the mutant Ero1alpha-Cys131Ala which does not
have a disulphide switch, leads to ER overoxidation [9]. In one of the
first studies to identify specific oxidised thiol sites on intracellular
proteins, using methoxypolyethylene glycol 5000 maleimide,
Herzog-Appenzeller et al. showed that PDI is found in two semi-
oxidised forms suggesting that either domain in human PDI can
catalyse substrate oxidation and reduction [10]. Both isoforms of Ero1
facilitate the propagation of disulphides via PDI to nascent proteins
and hence are crucial for oxidative maturation [11] in a process that
is modulated by the glutathione (GSH)-oxidised GSH (GSSG) redox
pair [12]. Other redox regulated enzymes that have been implicated
in control of protein folding include; (a) Prx4 which can use luminal
hydrogen peroxide to oxidise PDI and thereby favour oxidative
folding but limit oxidative stress; and (b) vitamin K epoxide
reductase in cooperation with membrane-bound Trx-like redox
partners [13]. The extent of redundancy in the pathways for oxidative
protein folding supports the importance of effective redox control in
the biosynthesis of secreted proteins.

There are very few examples of loss of redox control in the ER
which impact on the secretome. An early study by Lodish used DTT
to explore the effect of a strongly reducing environment on the
secretion of different proteins and found that only secretion of
those with disulphide bonds was reversibly inhibited by DTT [14].
In contrast, a recent study describes that in astrocytes overexpressing
mutant SOD1, total protein secretion was decreased although
increased mutant SOD1-containing exosome release was observed,
possibly to prevent intracellular aggregate formation [15]. It remains
to be determined how the conventional ER secretory pathway is
affected by SOD1 mutant and whether this is due to excess ROS. The
extent to which exosome and microparticle (extracellular vesicles;
EV) formation can influence protein damage or transport modified
proteins is unknown, however, a few intriguing reports suggest that
EV can induce redox signalling at distant sites [16–18] and that their

Table 1
Major plasma protein characteristics.

Plasma protein Normal level (%) Function Half-life

Albumin 3.5–5 g/dl 60 Create oncotic pressure 17d
Carry other molecules

Immunoglobulins 1–1.5 g/dl 18 Acquired immune response 19–24 d in healthy subjects
Fibrinogen 0.2–0.45 g/dl 4 Blood clotting 3.5–5.5 d
α-globulins 0.15–0.35 g/dl 3 Anti-trypsin 62 h

0.03–0.2 g/dl 2 Haptoglobin 8 h
β globulins 0.2–0.36 g/dl 4 Transferrin, o24 h

0.06 g/dl 1 High Density Lipoprotein
0.1 g/dl 2 Low density lipoproteins

Hormones (e.g. norepinephrine) 0.6 NM Promote stress response 2.5 min
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