FISEVIER

Contents lists available at ScienceDirect

Redox Biology

journal homepage: www.elsevier.com/locate/redox

Mini Review

Redox biology of hydrogen sulfide: Implications for physiology, pathophysiology, and pharmacology

Asaf Stein, Shannon M. Bailey*

Departments of Environmental Health Sciences and Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA

ARTICLE INFO

Article history: Received 6 November 2012 Accepted 8 November 2012

Keywords: Hydrogen sulfide Redox biology Oxygen Oxidative stress Mitochondria

ABSTRACT

Hydrogen sulfide (H_2S) has emerged as a critical mediator of multiple physiological processes in mammalian systems. The pathways involved in the production, consumption, and mechanism of action of H_2S appear to be sensitive to alterations in the cellular redox state and O_2 tension. Indeed, the catabolism of H_2S through a putative oxidation pathway, the sulfide quinone oxido-reductase system, is highly dependent on O_2 tension. Dysregulation of H_2S homeostasis has also been implicated in numerous pathological conditions and diseases. In this review, the chemistry and the main physiological actions of H_2S are presented. Some examples highlighting the cytoprotective actions of H_2S within the context of cardiovascular disease are also reported. Elucidation of the redox biology of H_2S will enable the development of new pharmacological agents based on this intriguing new redox cellular signal.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

Contents

	Introduction			
2.	Historical benefits of H ₂ S.	33		
3.	Endogenous production of H ₂ S	33		
	Catabolism of H ₂ S			
5.	Measurement of H ₂ S in mammalian samples.	35		
	Biological roles of H ₂ S			
7.	Vasoactivity	35		
8.	Angiogenesis	36		
9.	Inflammation	36		
0.	Hydrogen sulfide and cytoprotection	37		
1.	Cardiovascular disease	37		
2.	Summary	37		
	nors contributions			
Ack	knowledgments			
Refe	eferences 38			

Abbreviations: ARE, Antioxidant response element; CO, Carbon monoxide; CBS, Cystathionine-β-synthase; CGL, Cystathionine-γ-lyase; CcO, Cytochrome c oxidase; GSH, Glutathione; HSP, Heat shock protein; H₂S, Hydrogen sulfide; HIF, Hypoxic inducible factor; IL-1β, Interleukin 1 beta; IL-6, Interleukin 6; 3-MST, 3-mercaptopyruvate S-transferase; NO, Nitric oxide; NF-κB, Nuclear factor light chain enhancer of activated B cells; oxLDL, Oxidized low density lipoprotein; PAG, Propargylglycine; PGE2, Prostaglandin E2; NaHS, Sodium hydrosulfide; Na₂S, Sodium sulfide; SQR, Sulfide quinone oxido-reductase; TNF-α, Tumor necrosis factor alpha; VEGF, Vascular endothelial growth factor; VSMC, Vascular smooth muscle cells

^{*} Correspondence to: Department of Pathology, University of Alabama at Birmingham, 1670 University Blvd, Volker Hall G019B, Birmingham, AL 35294-0019, USA. Tel.: +1 205 934 7070; fax: +1 205 975 1126.

1. Introduction

Hydrogen sulfide (H₂S); a toxic gas, is endogenously produced, bioactive, and contributes to numerous physiological functions in mammalian systems. Studies support the possibility that H₂S has therapeutic potential for treating multiple diseases including cardiovascular diseases. For example, experimental animal studies show that H₂S may be effective in treating atherosclerosis and protecting against ischemia-reperfusion injury [1-3]. Interest in the cytoprotective actions of H₂S has grown since the discovery that it can induce a hypometabolic state characterized by decreased O₂ consumption, heart rate, and body temperature in non-hibernating rodents [4]. Although not discussed in this review. H₂S-dependent hypometabolism is an O₂-dependent phenomenon [5]. The proposed mitochondrial and signaling actions of H₂S make this molecule an attractive intervention for preventing and treating diseases and trauma-associated injuries. In this review article, we provide an overview of H₂S redox biology as it relates to the biological and pharmacological actions of this interesting new signaling molecule in mammalian systems.

2. Historical benefits of H₂S

The ancient Greeks, Egyptians, and Romans regularly bathed in natural sulfur springs as treatments for disease [6]. Depending on the microbiota and oxygen content, sulfur springs typically contain H₂S concentrations ranging from 1 to 500 µM [7] with anti-inflammatory, anti-bacterial, vasodilatory, and anti-fungal properties attributed to the sulfur-containing water [8]. Epidemiological studies report that a diet rich in organosulfur species is associated with longevity and decreased morbidity [9]. Members of the Allium genus (garlic and onions), which contain organosulfur compounds have a well-documented history of health benefits [10]. Indeed, garlic-derived compounds such as diallyl trisulfide release H₂S in the presence of cellular reductants like glutathione (GSH) [11]. Populations that consume garlic regularly have low blood pressure, low cholesterol, and less vascular disease [12]. While administration of exogenous sulfur-containing compounds shows strong promise as therapies, H₂S is also endogenously produced in many different human tissues.

3. Endogenous production of H₂S

In the early 1990s, it was discovered that H_2S is enzymatically produced by two cytosolic enzymes; cystathionine β -synthase (CBS) and cystathionine γ -lyase (CGL) [13,14]. Seminal work of Abe and Kimura showed, for the first time, that H_2S enhances long-term potentiation in the hippocampus [15]. Specifically, they demonstrated that H_2S was produced by CBS and that exogenous H_2S enhanced NMDA receptor-mediated responses. Since then many studies have shown that CBS and CGL are expressed in human tissues with H_2S contributing to physiological and pathophysiological processes (Table 1). In addition to CBS and CGL, there are other enzymes that produce H_2S with several utilizing

cysteine as a substrate. The enzyme 3-mercaptopyruvate Stransferase (3-MST) is found in mitochondria and cytosol and produces H2S [16]. Several H2S producing enzymes are pyridoxal-5'-phosphate (PLP) dependent enzymes [17]. Moreover, other sulfur-containing amino acids, such as cystine and homocysteine, can be metabolized to generate H₂S. The enzymatic mechanisms of H₂S production are shown in Fig. 1. Many of these enzymes participate in the cellular sulfur cycle and have multiple enzymatic activities, including H₂S generation. Because the concentration of reduced sulfur species has an effect on many cellular processes [18], the activity of these enzymes is tightly regulated. Much of this regulation is linked to substrate availability [19]. Moreover, these are redox-sensitive enzymes, which exhibit increased activity under oxidative conditions [20]. Considering that H₂S; a reductant, is a product of these enzymes, it is conceivable that enzymatic activity may also be subject to negative feedback regulation. Finally, work by Wang et al. suggests that under certain conditions, such as oxidative stress, H2S-producing enzymes translocate from the cytosol to mitochondria [21]. This dynamic regulation bolsters the argument that H₂S may function as a redox signaling molecule.

4. Catabolism of H₂S

Several regulated and unregulated non-enzymatic processes participate in H₂S catabolism. These pathways maintain in vivo H₂S concentrations, most likely, in the nM to low μM range. H₂S can react with heme proteins in mitochondria and therefore H₂S can function as a mitochondrial respiratory toxicant [22,23]. Fatal industrial accidents have been documented in individuals exposed to high concentrations of H_2S gas (e.g., > 1000 pm) [24]. Therefore, the toxicological profile of H₂S has been well-studied and documented [24]. The mechanism of toxicity is through the binding of H₂S to cytochrome *c* oxidase (CcO) mediating respiratory inhibition [22]. However, this interaction is complex and poorly understood because H₂S can act as both an inhibitor and an electron donor for CcO [25]. H_2S binds to the oxidized states of the heme $a-a_3$ binuclear center, resulting in the reduction of the heme molecules [26]. Excess H₂S can also reduce Cu_B [27]. While the stoichiometry may vary, Cooper and Brown reported that 3 molecules of H₂S bind per inhibited CcO [28]. In this inhibitory reaction, H₂S is oxidized to sulfane sulfur and this is coupled to consumption of molecular O₂ [28]. Unlike nitric oxide (*NO), the inhibition of CcO by H₂S is noncompetitive with O₂ [27,29]. In addition, H₂S can also directly reduce the electron carrier cytochrome c producing the one electron oxidation product, the thiyl radical (*SH) [28].

Rhodanese, a mitochondrial sulfur transferase enzyme, catalyzes the oxidation of H_2S [30]. It is one part of three enzymatic activities characterized as a major pathway for H_2S catabolism. This pathway consists of a sulfide quinone oxido-reductase (SQR), a sulfur dioxygenase, and the sulfur transferase enzyme rhodanese (Figs. 2 and 3). H_2S reduces the external disulfide on the SQR to form a thiol (RSH) and a perthiol (RSSH). This two electron oxidation of H_2S reduces the FAD prosthetic group, which uses ubiquinone (Q) as an electron acceptor [31] The second sulfur

Table 1 Biological and therapeutic actions of H_2S are O_2 -dependent.

Biological context	Low O ₂	High O ₂
Inflammation Vasoactivity	Anti-inflammatory: IL-10; \downarrow IL-6, ICAM Vasodilatory: \uparrow K_{ATP} channel conductance	Pro-inflammatory: ↑ NF-κB, TNF-α Vasoconstrictive
Angiogenesis Respiratory inhibition Ischemia-reperfusion	Pro-angiogenic: VEGF, Hif1- α Higher [H ₂ S] results in more inhibition Ischemic tissue has higher [H ₂ S]: mito K_{ATP} , ARE genes	No effect O_2 acts as an H_2S antagonist: $\uparrow SOx$ Unknown

Download English Version:

https://daneshyari.com/en/article/1923226

Download Persian Version:

https://daneshyari.com/article/1923226

Daneshyari.com