
Normal mode analysis with molecular geometry restraints: Bridging molecular
mechanics and elastic models

Mingyang Lu a, Jianpeng Ma a,b,⇑
a The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030, United States
b Department of Bioengineering, Rice University, Houston, TX 77005, United States

a r t i c l e i n f o

Article history:
Received 21 October 2010
and in revised form 15 December 2010
Available online 4 January 2011

Keywords:
Normal mode analysis
Energy minimization
All-atom normal modes
Coarse-graining
Molecular geometry restraints
Tip effect

a b s t r a c t

A new method for normal mode analysis is reported for all-atom structures using molecular geometry
restraints (MGR). Similar to common molecular mechanics force fields, the MGR potential contains short-
and long-range terms. The short-range terms are defined by molecular geometry, i.e., bond lengths,
angles and dihedrals; the long-range term is similar to that in elastic network models. Each interaction
term uses a single force constant parameter, and is determined by fitting against a set of known struc-
tures. Tests on proteins/non-proteins show that MGR can produce low frequency eigenvectors closer
to all-atom force-field-based methods than conventional elastic network models. Moreover, the ‘‘tip
effect’’, found in low frequency eigenvectors in elastic network models, is reduced in MGR to the same
level of the modes produced by force-field-based methods. The results suggest that molecular geometry
plays an important role, in addition to molecular shape, in determining low frequency deformational
motions. MGR does not require initial energy minimization, and is applicable to almost any structure,
including the one with missing atoms, bad contacts, or bad geometries, frequently observed in low-res-
olution structure determination and refinement. The method bridges the two major representations in
normal mode analyses, i.e., the molecular mechanics models and elastic network models.

Published by Elsevier Inc.

Introduction

Normal mode analysis (NMA)1 is an important computational
tool in studying vibrational motions of biomolecules [1–4]. During
the past decades, many mode calculation methods have been devel-
oped, including force-field-based methods and network-based
methods.

In the force-field-based methods, the molecular potential func-
tion is given by a force field, such as CHARMM [5–7] and AMBER
[8–11]. Some coarse-grained schemes have also been developed
to reduce computational costs, such as the Rotations–Translations
of Blocks (RTB) [12] and all-atom-derived methods [13,14]. Re-
cently, Hendrickson group developed a coarse-grained force-field
for NMA and molecular dynamics [15]. These methods can keep de-
tailed molecular interactions, but they usually require initial energy
minimization step, which in many cases distorts structures [16].

In the network-based methods, such as the coarse-grained elas-
tic network models (ENM) [17–31], the potential functions are so-
lely harmonic terms with equilibrium positions reside on the
studied structure. Therefore, they can bypass the initial energy
minimization step. However, it was found that the low frequency
modes produced by these methods may not be as accurate as
force-field-based methods [16,26,32]. In particular, some low fre-
quency modes contain abnormally localized motions, known as
‘‘tip effect’’ [33]. Methods have been developed to alleviate this
problem by strengthening local stiffness [33–35], or by specific
coarse-graining scheme [36]. However, in node-based (or net-
work-based) mode calculation methods, it may become subjective
for the selection of nodes, especially for non-protein components,
let alone the stiffness between nodes.

Recently, we developed the minimalist network model (MNM)
[16,32] to cope with issues in both conventional force-field-based
methods and network-based methods. MNM utilizes a force field
to calculate potential, and slightly modifies the Hessian to bypass
the initial energy minimization step. Tests show that MNM outper-
forms both CHARMM normal mode method and all-atom elastic
network model in fitting experimental anisotropic displacement
parameters of crystal structures. However, in some cases, one
may need to deal with low-resolution structures, which commonly
contain missing atoms, bad contacts and bad geometries. In those
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cases, the accurate potentials and Hessian matrices are usually
hard to be calculated by a molecular force field. Moreover, many
structures contain some components (e.g., organic ligands) that
are not conveniently defined in a molecular force field.

To solve this problem, in this study, we developed a new mode
calculation method for all-atom structure using molecular geome-
try restraints (MGR). In addition to non-bonded interactions com-
monly used in the conventional ENM, the MGR Hamiltonian has
harmonic restraining terms on molecular geometry, i.e., bond
lengths, bond angles and dihedral angles. Each potential term in
MGR uses a single force constant parameter to represent the
characteristic stiffness of each interaction type. Unlike force-
field-based methods, MGR immediately satisfies the harmonic
approximation, allowing one to bypass the lengthy initial energy
minimization step. On the other hand, unlike conventional ENM,
MGR includes molecular interactions defined by molecular
geometry, allowing better description of low frequency modes
influenced by the details of molecular structure.

Since the calculation of MGR only requires the information of
atomic positions and bond connectivity of the molecules, it is
widely applicable to all kinds of macromolecules, such as proteins,
DNA, lipids, small molecule ligands, etc. Moreover, MGR can be ap-
plied to low quality structures, which commonly contains missing
atoms, bad contacts and bad geometries. MGR can also be applied
to supramolecular complexes, by combining it with coarse-grain-
ing schemes such as RTB method [12].

Our tests show that MGR can systematically produce low fre-
quency eigenvectors closer to the force-field-based methods than
ENM. This suggests that, molecular geometry plays an important
role, in addition to molecular shape [37], in determining low fre-
quency deformational motions. The MGR method provides a bridge
between two major representations in normal mode analyses, i.e.,
the molecular mechanics models and elastic network models.

In the following, we first describe the methodology of MGR,
including the potential functions defined by the molecular geome-
try. Then, we show the procedure of optimization of parameters
and the way to test MGR.

Material and methods

MGR

The potential function used in MGR method has four terms

V ¼ Vbond þ Vangle þ Vdihedral þ Vnon-bond: ð1Þ

Unlike force-field potentials, each potential term of MGR is a
harmonic potential with energy minimum on the studied
structure.

The first two terms, Vbond and Vangle, denote bond length and
bond angle potential. They have forms of

Vbond ¼
X

klðl� l0Þ2; ð2Þ

where the summation is over all chemical bonds, l and l0 are the
instantaneous and initial bond lengths; and

Vangle ¼
X

khðh� h0Þ2; ð3Þ

where the summation is over all bond angles, h and h0 are the
instantaneous and initial bond angles. The constants kl and kh are
the force constants for the bond and bond angle interactions. Here,
an assumption is made that, like the non-bonded interactions in
conventional ENM, all the bond length (or bond angle) interactions
share the same stiffness. It should be noted that although these po-
tential terms in MGR have the same functional forms as those in
some force-fields, Eqs. (2) and (3) are conceptually different from
the traditional bonded potentials. Specifically, l0 and h0 in the

MGR potential term are not equilibrium values used in molecular
mechanics force fields, but values directly taken from the studied
structures. It automatically ensures the MGR potential has its en-
ergy minimum at any given starting configuration, i.e., MGR does
not require initial energy minimization. Such feature also provides
an advantage for MGR over regular force-field-based methods when
applied to low quality structures, such as the ones reconstructed
from low-resolution X-ray crystallographic data, the ones modeled
by structure prediction, or the ones modeled in early stages of X-ray
crystallographic refinement. Since these structures usually contain
defects, such as unphysical bond lengths, missing atoms, or bad
contacts, MGR method would have no problem in dealing with
those defective structures because all interactions of each type are
modeled as uniformly distributed harmonic potentials.

The third term in Eq. (1), Vdihedral, is the dihedral angle potential
in a form of

Vdihedral ¼
X

k/ð/� /0Þ2; ð4Þ

where the summation is over all dihedral angles and improper dihe-
dral angles, / and /0 are the instantaneous and initial dihedral an-
gles, k/ is the force constant. Although the dihedral angle potential,
in some cases, is modeled with a periodic function, we used a sim-
ple harmonic term to model dihedral interactions. This treatment is
fine in the current study because only one potential minimum is re-
quired in the normal mode calculations. In this study, dihedral an-
gles and improper dihedral angles were modeled with the same
force constant k/, because no apparent improvements were found
when modeled with separate parameters.

The last term Vnon-bonded is the non-bonded potential in a form of

Vnon-bonded ¼
X

r0�rc

krðr � r0Þ2; ð5Þ

where r and r0 are the instantaneous and initial distance of the non-
bonded atom pairs, rc is the cutoff distance and kr is the force-con-
stant. The non-bonded term is similar to the potential function of
the conventional ENM except that MGR excludes the atom pairs
that are involved in a chemical bond or a bond angle (1–2, 1–3
interactions). Like many other studies, 1–4 interactions are included
in the potential function. Following the literature [17], the cutoff
distance rc for the non-bonded interaction is chosen as 6 Å.

One may wonder whether the non-bonded interactions should
be modeled heterogeneously, i.e., to use several parameters to
characterize various non-bonded interaction types. To answer this
question, we tested MGR on several protein structures with a ver-
sion in which hydrogen bonds were modeled with a stronger force
constant. Hydrogen bond interactions were selected in the test
mainly because they are crucial in stabilizing protein structures.
However, no apparent improvement was found for the version
with stiffened hydrogen bond interactions. Therefore, we believed
that it is appropriate to model the non-bonded interactions hom-
ogenously for the purpose of current study.

Once the potential terms are defined in Eq. (1), it is then quite
straightforward to perform NMA. As already mentioned, MGR does
not require an initial energy minimization step. The Hessian matrix
of MGR can be obtained by calculating second derivatives of each
energy term according to the formulae derived in Ref. [38]. Although
the Hessian matrices are usually highly sparse, diagonalization of
the matrices is still computationally expensive for supramolecular
structures. To deal with this problem, one can reduce the dimension
of Hessian matrix by a coarse-graining scheme, e.g., RTB [12] and
sub-structure based method [13,14,39]. In this study, we mainly
implement and test a version of MGR coarse-grained by the RTB
method, in which case each residue is modeled as a rigid-body. By
implementing ARPACK package (http://www.caam.rice.edu/soft-
ware/ARPACK) to perform matrix diagonalization, we are able to
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