ELSEVIER

Contents lists available at ScienceDirect

Archives of Biochemistry and Biophysics

journal homepage: www.elsevier.com/locate/yabbi

Hydrodynamic and mass spectrometry analysis of nearly-intact human fibrinogen, chicken fibrinogen, and of a substantially monodisperse human fibrinogen fragment X

Barbara Cardinali ^a, Aldo Profumo ^a, Anna Aprile ^a, Olwyn Byron ^b, Gordon Morris ^c, Stephen E. Harding ^c, Walter F. Stafford ^d, Mattia Rocco ^{a,*}

- ^a Biopolimeri e Proteomica, Istituto Nazionale per la Ricerca sul Cancro (IST), Largo R. Benzi 10, I-16132 Genova, Italy
- b Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, Scotland, UK
- ^cThe National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK

ARTICLE INFO

Article history: Received 30 September 2009 and in revised form 15 October 2009 Available online 22 October 2009

Keywords:
Blood coagulation
Plasma proteins
Analytical ultracentrifugation
Light scattering
Differential pressure viscometry
Fibrinogen degradation products

ABSTRACT

The shape and solution properties of fibrinogen are affected by the location of the C-terminal portion of the $A\alpha$ chains, which is presently still controversial. We have measured the hydrodynamic properties of a human fibrinogen fraction with these appendages mostly intact, of chicken fibrinogen, where they lack 11 characteristic 13-amino acids repeats, and of human fragment X, a plasmin early degradation product in which they have been removed. The human fibrinogen/fragment X samples were extensively characterized by SDS-PAGE/Western blotting and mass spectrometry, allowing their composition to be precisely determined. The solution properties of all samples were then investigated by analytical ultracentrifugation and size-exclusion HPLC coupled with multi-angle light scattering and differential pressure viscometry detectors. The measured parameters suggest that the extra repeats have little influence on the overall fibrinogen conformation, while a significant change is brought about by the removal of the C-terminal portion of the $A\alpha$ chains beyond residue $A\alpha200$.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Fibrinogen (FG)¹ is a high molecular weight (\sim 340,000), centrosymmetric, dimeric glycoprotein found in the blood of vertebrates, where physiologically plays a critical role in the coagulation system [1,2]. Each half of the molecule consists of three polypeptide chains, called A α , B β and γ , whose six N-termini are contained in a central, symmetric globular region ("E-region") [2–4]. Two triple coiled-coil connectors join this region to two outer globular regions ("D-regions"), formed by the C-terminal parts of the B β and γ chains, each folding into independent domains [2–4]. The triple coiled-coil con-

nectors are held in register at their beginning and end by two disulfide bridge rings [3-7]. At the end of each coiled-coil, after the second disulfide ring, the $A\alpha$ chain reverses direction, forming a fourth coiled helix continuing for about half of the connector's length [6,7]. Thereafter, the location of the C-terminal parts of the $A\alpha$ chains (αC regions) is instead still controversial, ranging from partially freeswimming appendages [3,7], to forming a fourth globular region positioned on top of the central one [8–13]. Interestingly, there is a wide variation in the length of this portion of the $A\alpha$ chain among vertebrate species [14-20], mostly depending on the number of several 13-amino acids imperfect tandem repeats. In particular, ten such repeats were originally identified in the human species' $A\alpha$ chain [14], which has 610 residues in the mature form, but at least another repeat was later reported [21]. Instead, the repeats are completely absent in the chicken Aa chain, which has only 476 residues [18]. In Fig. 1, an alignment of the human and chicken sequences for the $A\alpha$ chain residues after the second disulfide ring is presented, where the definition of a possible additional, non-canonical repeat is also suggested. In contrast, the B β and γ chains have pretty much the same length in humans and chickens, containing 461/463 and 411/409 residues, respectively [7,24,25]. The αC regions are very susceptible to proteolytic attack, and their complete removal by

^d AUC Research Laboratory, Boston Biomedical Research Institute, Watertown, MA 02472, USA

^{*} Corresponding author. Fax: +39 0105737 325.

E-mail addresses: barbara.cardinali@istge.it (B. Cardinali), aldo.profumo@istge.it (A. Profumo), anna.aprile@istge.it (A. Aprile), o.byron@bio.gla.ac.uk (O. Byron), Gordon.Morris@nottingham.ac.uk (G. Morris), Steve.Harding@nottingham.ac.uk (S.E. Harding), stafford@bbri.org (W.F. Stafford), mattia.rocco@istge.it (M. Rocco).

¹ Abbreviations used: FG, fibrinogen; hFG, human fibrinogen; hFrX, human fibrinogen fragment X; hHMW-FG, human high molecular weight fibrinogen; hLMW-FG and hLMW'-FG, human low molecular weight (prime) fibrinogen; AUC, analytical ultracentrifugation; SEC, size-exclusion chromatography; SE-HPLC, size-exclusion high-performance liquid chromatography; MALLS, multi-angle laser light scattering; DPV, differential pressure viscometry; TIC, total ion chromatogram.

```
H166 SRALAREVDLKDYEDQQKQLEQVIA
                                            H190 4th helix on coiled coil
   ARSFDYQVDKEGYDNIQKHLTQASS
                                            C191
                                            H216
   KDLLPSRDROHLPLIKMKPVPDL-VPG
                                            C218 4th helix on coiled coil
C192
   IDMHPDFQTTTLSTLKMRPLKDSNVPE
H217 NFKSOLOKVPPEWKALTDMPO
                                            H237 Predicted mostly helix
C219
   HFKLKPSPEMOAMSAFNNIKO
                                            C239
H238 MRMELERPGGNEIT
                                            H251 Predicted mostly sheet
   MQVVLERPETDHVA
C240
                                            C253
H252 RGGSTSYG-TGSE
                        H263 Repeat I
H264 TESPRNPSSAGSW
                        H276 Repeat II
H277 NSGSSGPGSTGNR
                        H289 Repeat III
H290 NPGSSGTGGTATW
                        H302 Repeat IV
H303 KPGSSGPGSAGSW
                        H315 Repeat V
H316 NSGSSGTGSTGNO
                        H328 Repeat VI
H329 NPGSPRPGSTGTW
                        H341 Repeat VII
                        H354 Repeat VIII
H342 NPGSSERGSAGHW
H355 TSESSVSGSTGOW
                        H367 Repeat IX
H368 HSES-GSERPDSP
                        H379 Repeat X
H380 GSGNARPNNPD - W
                        H391 Repeat XI
H392 GTFEEVSGNV-SP
                        H403 Repeat XII?
C254
       -EARGD-SSP
H404 GTRREYHTEKLVTSKGDKELR
                                            H424 Predicted mostly sheet
   S----HTGKLITSSHRRESP
   TGKEKVTSGSTTTTRRSCSKTVTKTVI-G
                                            H452 Start globular region
                                            C303 (bovine NMR)
                                            H477
H453
   PDGHKEVTKEVVTSEDGSDCPEAMD---
C304 PDGPREEIVEKMVSSDGSDCSHLOGGREG
                                            C332
H478 - LGTLSGIGTLDGFRHRHPDEAAFFD TAS
                                            H505 (\downarrow = end bovine NMR)
C333 STYHFSGTGDFHKLDRLLPDLESFFTHDS
                                            C361
H506 TCKTFPCFFSP----MICFFVSFTFSPC
                                            H529
   V S T S S R H S I G S S T S S H V T G A G S S H L G T G G
C362
                                            C390
H530 SESGIFTNTKESSSHHPGIAEFPS--RGK
C391 KDK--FTDLGEEEEDDFGGLO-PSGFAAG
                                            C416
H557 SSSYSKQF--TSSTSYNRGDSTFESKSYK
                                           H583 End globular region
   SASHSKTVLTSSSSSFNKGGSTFETKSLK
H584 --- MADEAGSEADHEGTHSTKRGHAKS-RPV
                                                H610 C-terminal
C446 TRETSEQLGGVQHDQSAEDTPDFKARSFRPA
                                                C476
```

Fig. 1. Alignment of the human (H) and chicken (C) $A\alpha$ chain C-terminal region after the second disulfide ring, as produced by T-COFFEE version 5.05 (http://www.tcoffee.org) [22]. Some features are indicated on the right side; the secondary structure predictions were made with Jpred3 (http://www.compbio.dundee.ac.uk/www-jpred/) [23]. Mature proteins numbering.

plasmin generates a FG species known as "fragment X" (FrX) [26], which also lacks the first ${\sim}54$ residues of the ${\beta}$ chain [27] (the N-terminus contains a thrombin-cleavable sequence called fibrinopeptide B, hence the name change from B ${\beta}$ to ${\beta}$; a similar sequence, fibrinopeptide A, is at the N-terminus of the A ${\alpha}$ chain). A similar species, but with an uncleaved B ${\beta}$ N-terminus, is found in normal plasma together with nearly-intact FG; they are often referred to as "fraction I-8" and "fraction I-4", respectively [28].

Over the past $\sim \! 10$ years, great advancements have been made in determining the structure of fibrinogen, mainly by X-ray crystallography, e.g. [6,7,29–35]. In particular, the structure of intact chicken fibrinogen at 2.7 Å resolution was determined, but the A α chain could not be traced beyond residue Glu218 [7]. However, two nearly symmetrical electron density blobs were defined be-

tween the elongated, staggered FG molecules in the crystals, sideways to the βC -domains, above the second half of the coiled-coil of a molecule, and below the central region of the preceding molecule (see Fig. 2 in [7]). Likewise, the αC regions could not be resolved in the recent crystal structure of intact human FG [35]. Structural studies have also been performed on the last $\sim\!200$ residues of the A α chain (αC -domain), identified as a likely globular region by calorimetry [36,37]. In particular, a recent NMR study has presented the structure of a bovine αC -domain recombinant fragment corresponding to the human 425–505 and chicken 278–361 residues [38].

The location of such a large portion of the $A\alpha$ chain could clearly affect the shape and the solution behavior of FG. In order to determine their contribution, we have measured the hydrodynamic

Download English Version:

https://daneshyari.com/en/article/1926143

Download Persian Version:

https://daneshyari.com/article/1926143

<u>Daneshyari.com</u>