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Abstract

The conditions for accurately determining distance constraints from TrNOESY data on a small ligand (3 0CMP) bound to a small
protein (RNase A, <14 kDa) are described. For small proteins, normal TrNOESY conditions of 10:1 ligand:protein or greater can lead
to inaccurate structures for the ligand-bound conformation due to the contribution of the free ligand to the TrNOESY signals. By using
two ligand:protein ratios (2:1 and 5:1), which give the same distance constraints, a conformation of 3 0CMP bound to RNase A was deter-
mined (glycosidic torsion angle, v = �166�; pseudorotational phase angle, 0� 6 P 6 36�). Ligand–protein NOESY cross peaks were also
observed and used to dock 3 0CMP into the binding pocket of the apo-protein (7rsa). After energy minimization, the conformation of the
3 0CMP:RNase A complex was similar to the X-ray structure (1rpf) except that a C3 0-endo conformation for the ribose ring (rather than
C2 0-exo conformation) was found in the TrNOESY structure.
� 2007 Elsevier Inc. All rights reserved.
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Transferred nuclear Overhauser effect spectroscopy
(TrNOESY)1 is extensively used in determining the struc-
ture of a ligand bound to a protein [1–6]. The observed
nuclear Overhauser effect (NOE) is the population
weighted average of the bound and free NOE under fast
chemical exchange conditions. For a high molecular weight
protein, the observed NOE arises essentially from the
ligand in the bound state even if the free ligand is in excess
[7–10]. This approach works well for proteins that exceed
25 kDa [7,11–13], but few structures of ligands bound to
proteins less than 25 kDa have been solved using this
approach [8,14–16]. Theoretical calculation [17] shows that
the NOE from small ligands can contribute substantially to
the observed signal when the protein is less than 20 kDa.

Although direct nuclear magnetic resonance (NMR) meth-
ods can be employed for ligand:protein complexes less than
25 kDa, these approaches become more difficult when the
ligand is not tightly bound to the protein and/or if few
inter-proton constraints are present between ligand and
protein. In this study, we explore the usefulness and limita-
tions of TrNOESY experiments in generating a ligand
structure when bound to a protein under 20 kDa.

We have chosen the cytidine 3 0-monophosphate:ribonu-
clease A (3 0CMP:RNase A) system, since it involves a small
ligand bound weakly to a small protein. RNase A is a
13,686 Da protein containing 124 residues in a single poly-
peptide chain [18]. The X-ray structure of RNase A was
first determined by Kartha et al. [19]. The enzyme consists
of a long four-stranded anti-parallel b-sheet and three short
a-helixes. The X-ray structures of RNase A with different
pyrimidine nucleotide inhibitors were solved to help under-
stand the catalytic mechanism [20,21], which involves His-
12, His-112 and Lys-41. The 1H chemical shifts of RNase A
in aqueous solution were assigned [22], and the solution
structure of the apo-protein was determined by NMR
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spectroscopy [23]. The NMR structure of apo-RNase A is
very similar to the reported X-ray structures.

Simple pyrimidine nucleotides are competitive inhibitors
of RNase A, and their binding constants as a function of
pH are known [24–31]. Under the conditions in this study,
the 3 0CMP:RNase A complex has a dissociation constant
of about 50 lM, which is well suited for TrNOESY exper-
iments. We show here that by maintaining a low
ligand:protein ratio, the free ligand contribution to the
NOE can be minimized and an accurate three-dimensional
(3D) structure for the ligand bound to the protein can be
obtained. In addition, because we observed protein:ligand
NOEs at this low protein–ligand ratios in addition to the
TrNOESY, these NOE constraints were used to dock the
ligand into the apo-structure (either NMR or X-ray) to
achieve a holo-protein complex that is essentially in agree-
ment with the X-ray crystal structure of 3 0CMP bound to
RNase A [20].

Materials and methods

Materials

3 0CMP (lot # 36H7822) and RNase A (lot # 104H7110) were pur-
chased from Sigma Chemical Co. and used without further purification.
D2O (99.83%) was purchased from Cambridge Isotope Lab. Acetic
acid-d4 (99.8%) was purchased from Aldrich Chemical Co.

Preparation of protein sample

RNase A was dissolved in sodium acetate buffer solution (0.1 M, pH
5.5), and the concentration was determined spectrophotometrically by
using e278 = 9800 M�1 cm�1 [1]. The concentration of 3 0CMP was mea-
sured by using e260 = 7600 M�1 cm�1 [24]. The pH was not corrected for
isotope effects.

NMR measurements

Standard 1H NMR experiments [32,33] were run on a Bruker DRX-
400 MHz spectrometer at 300 K without spinning. Presaturation of HDO
was used for all 1H experiments. The 2D nuclear Overhauser effect spec-
troscopy (NOESY) spectra were collected with a 4160 Hz spectral width at
60, 90, 130, 160, 190 and 220 ms mixing times. Data was processed with a
Gaussian window function in the t2 dimension and with a 60� cosine-
square function and zero filled to yield a 2048 · 1024 matrix. T1 noise was
reduced by dividing the first data point by 2 before the second FT [34].
Baseline correction using a filter function was applied to all spectra [35].

To identify spin-diffusion effects, a transferred rotating frame NOE
correlated spectroscopy (TrROESY) experiment was run under the same
condition as the TrNOESY experiment at a single mixing time (210 ms).
The 2D rotating frame NOE correlated spectroscopy (ROESY) spectra
were acquired using spin-lock times of 60, 90, 120, 150, and 180 ms [5].
Coherent magnetization transfer that occurs by J-coupling pathways, was
eliminated by using a 180�(x)180�(�x) spin-lock sequence [36]. The
experimental conditions were the same as the TrNOESY experiments. For
the chemical shift assignment of protons on the ribose, the 2D TOCSY
spectrum was run with a spin-lock time of 28 ms [35].

Molecular modeling

Simulated annealing and energy minimization of 3 0CMP were con-
ducted on a Silicon Graphics Octane workstation in Sybyl 6.4 (Tripos).
Simulated annealing without distance constraints was carried out for 20

cycles to generate a family of different ribose ring conformations of
3 0CMP. The molecules were heated to 1000 K and equilibrated for 2 ps,
which was followed by exponential cooling to 300 K and annealing for
5 ps. To increase the number of conformations about the glycosidic bond
of 3 0CMP, we changed the v value of the starting structures to ensure that
different anti and syn conformations were present for each ribose ring
conformation of 3 0CMP. Forty starting conformations of 3 0CMP were
used to generate the final structure. Energy minimization was done for at
least 400 iterations or until the energy converged by using Powell mini-
mization (in vacuo). Two different force fields, Amber [37] and MMFF94
[38], were used with a distance-dependent dielectric constant of 4, a non-
bonding cutoff of 8 Å and Kollman and MMFF94 charges. NMR dis-
tances were used with a constraint range of ±5% of each value. A penalty
energy of 200 kcal/(mol Å2) was applied for distances outside this range.
The final structures were ordered according to energy. Structures with
NOE violations (energies that were greater than 20 kcal/mol above the
low-energy structure) were excluded. The final NMR derived 3 0CMP
structure was then used to provide a docked structure of the ligand–pro-
tein complex. The NOE contacts found in the 150 ms NOESY spectrum
using a 2:1 3 0CMP:RNase A were assigned as strong (1.8–2.5 Å), medium
(1.8–3.0 Å), or weak (1.8–5.0 Å). The RNaseA: 3 0CMP structure was
determined by docking the TrNOESY structure of the ligand into the
binding pocket of the X-ray structure of either the holo-(1rpf) or apo-
protein (7rsa). The complex was energy minimized with the 3 0CMP
TrNOESY structure using the NMR-derived constraints. Protein residues
within 5 Å of 3 0CMP were allowed to minimize.

Theoretical details

RNase A was titrated with 3 0CMP, and the 1D 1H spectra were ana-
lyzed to determine a dissociation constant, Kd, of 3 0CMP bound to RNase
A. The binding of the ligand (L) to a single site on the protein (P) is a
two-state second-order exchange [39]:

Lþ P �
kon

koff

PL

Kd is given by

Kd ¼ koff=kon ¼ ð½L�0 � ½PL�Þð½P�0 � ½PL�Þ=½PL� ð1Þ

where [L]0 and [P]0 are the total concentration of the ligand and protein,
respectively. For fast exchange, a single chemical shift is observed (dobs),
which is the weighted average of the chemical shifts of the bound (dPL)
and free states (dL) [40]:

dobs ¼ dL½L�=½L�0 þ dPL½PL�=½L�0 ð2Þ

Eqs. (1) and (2) are rearranged to express dobs as a function of total ligand
and protein concentrations, Kd and the chemical shift difference of the
ligand in its bound and free states:

dobs � dL ¼ dPL � dLð Þ ½L�0 þ ½P�0 þ Kd

� �
� ½L�0 þ ½P�0 þ Kd

� �2
n

�4 ½L�0½P�0
� �1=2

o.
2½L�0 ð3Þ

The data were fitted as a plot of dobs � dL vs [L]0 using nonlinear
regression.

The volumes of the NOE cross peaks and diagonal peaks were deter-
mined with the same scaling factor for all spectra. To extend the linear
region of the NOE build-up curve, the percentage NOE intensity (I) was
taken to be the ratio of the NOE cross peak volume divided by the volume
of the diagonal peak of H1 0 at the same mixing time [10,41]. The NOE
build-up curves were fitted to a second degree polynomial equation to
determine the initial NOE build-up rate. The relation between NOE
intensity (I) and mixing time (sm) is:

IðsmÞ ¼ 1� expð�RsmÞ ¼ Rsm � ð1=2ÞR2s2
m þ ð1=6ÞR3s3

m � � � � ð4Þ

where R is the relaxation matrix, which has elements, Rij, that describe the
initial build-up rate of the NOE cross peak between Hi and Hj.
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